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Abstract

A general equilibrium monetary model is developed to study the optimal design of a cryptocur-

rency system based on a blockchain. The model is then calibrated to Bitcoin transaction data

to perform a quantitative assessment of the scheme. We formalize the critical elements of a

cryptocurrency: the blockchain to keep a history of transactions, the distributed updating of

information and consensus through competition for such updating. We show that, unlike cash,

a cryptocurrency system does not support an immediate, final settlement. In addition, the cur-

rent Bitcoin scheme generates a welfare loss of 1.4% of consumption. Such loss can be lowered

substantially to 0.08% by adopting the optimal policy which reduces mining and relies on money

growth rather than transaction fees to finance mining rewards. The efficiency can potentially be

improved further by adopting an alternative consensus protocols such as the proof-of-stake. A

key economic feature of a cryptocurrency system is that mining is a public good, while double

spending to defraud the cryptocurrency depends on individual incentives to reverse a particular

transaction. As a result, a cryptocurrency works best when the volume of transactions is large

relative to the individual transaction size (e.g., as in a retail payment system).
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1 Introduction

Since the creation of Bitcoin in 2009, numerous private cryptocurrencies have been introduced.1

Bitcoin is by far the most successful one. It has been getting a lot of media attention, and its total

market value has reached 20 billions USD in March 2017. More importantly, a number of cen-

tral banks started recently to explore the adoption of cryptocurrency and blockchain technologies

for retail and large-value payments. For example, the People’s Bank of China aims to develop a

nationwide digital currency based on blockchain technology; the Bank of Canada and Monetary

Authority of Singapore are studying its usage for interbank payment systems; the Deutsche Bun-

desbank has developed a preliminary prototype for blockchain-based settlement of financial assets.

Many proponents believe that cryptocurrency and blockchain technology will have a significant

influence on the future development of payment and financial systems.

While policy makers concern about the opportunities and challenges brought about by these techno-

logical advances, there is very little guidance provided by economic theory regarding the appropriate

usage of these technologies and the optimal design of these systems. This paper attempts to pro-

vide an economic theory to help us understand the fundamental economic trade-offs and address

relevant policy issues. Most existing models of cryptocurrencies are built by computer scientists

who focus mainly on the feasibility and security of these systems.2 This line of research often ig-

nores the incentives of participants (e.g., the incentives of malicious attackers) and the endogenous

nature of key variables (e.g., the real value of cryptocurrencies). More importantly, to study the

optimal design of a cryptocurrency system, we need to model from first principles the behaviors of

different participants, to derive the equilibrium interactions among these agents and to study the

optimal usage of different policy instruments. To this end, this paper develops a general equilibrium

monetary model of a cryptocurrency system to study its optimal design. This approach is desir-

able because the model endogenizes the value of cryptocurrency, and endogenizes the underlying

trading activities and mining activities. It also provides a welfare notion for assessing alternative

system designs. We will use this model to evaluate the performance of a cryptocurrency system

calibrated to Bitcoin transaction statistics. We will study the optimal design of the cryptocurrency

system in different settings. Furthermore, we compare the usage of different consensus protocols

1By July 2016, more than 740 cryptocurrencies have been introduced.
2The book by Narayanan et al. (2016) provides a useful overview and references of computer science studies on

Bitcoin and cryptocurrency technologies.
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(e.g. proof-of-work and proof-of-stake), and to evaluate the efficiency of a cryptocurrency system

relative to a cash system.

The economic literature on cryptocurrencies is very thin. So far, there are only a few economic

models developed to study this new payment technology.3 These models use different frameworks

to address different research questions, and often focus on different aspects of cryptocurrencies.

Chiu and Wong (2015) apply the mechanism design approach to review several e-money technolo-

gies including Bitcoin, PayPal and M-Pesa and identify some essential features of e-money that

can help implement constrained efficient allocations. Gans and Halaburda (2013) develop a model

of platform management to study platform-specific digital currencies such as Facebook Credits.

Fernández-Villaverde and Sanches (2016) model cryptocurrencies as privately issued fiat curren-

cies and analyze whether competition leads to efficiency. Agarwal and Kimball (2015) advocate

that the adoption of digital currencies can facilitate the implementation of a negative interest rate

policy. Rogoff (2016) suggests subsidizing the provision of digital money to the unbanked in or-

der to phase out paper currency which facilitates undesirable tax evasion and criminal activities.

To the best of our knowledge, our work is the first paper that explicitly models the distinctive

technological features of a cryptocurrency system (e.g. blockchain, mining, double-spending prob-

lems) in an equilibrium monetary model and investigates its optimal design both qualitatively and

quantitatively.

2 Cryptocurrencies: A Brief Review

For readers less familiar with cryptocurrencies, this section briefly reviews some of their key features,

highlighting the main differences from traditional payment systems.

For thousand years, physical tokens have been being used as means of payment (e.g. shells, gold

coins, bank notes). In such setting, a direct exchange of sellers’ goods and buyers’ tokens allows

them to achieve an immediate and final settlement. (See Panel (a) in Figure 1). This option is

unavailable, however, when the two parties are not present in the same location (e.g. e-commerce),

necessitating the usage of digital tokens. In a digital currency system, the means of payment is

simply a string of bits. It becomes challenging to prevent the buyer from re-using the same bit

3Examples of empirical research include Moore and Christin (2013), Yermack (2013) and Gandal and Ha laburda

(2014), Glaser et al. (2014).
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(a) Physical tokens (e.g. cash) 

 

(b) Digital tokens with a trusted third party (e.g. PayPal) 

 

 

(c) Digital tokens in a decentralized network (e.g. Bitcoin) 

                  

Figure 1: Different Currency Systems
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Figure 2: How the Blochchain is Updated

string over and over again. This is called the double-spending problem. This problem can be

solved easily when there is a trusted third party (e.g. PayPal) who manages a centralized ledger

and transfers balances by crediting and debiting buyers and sellers’ accounts. (See Panel (b)). In

many settings, it is infeasible to find (e.g., lack of trust) or undesirable to use (e.g., the single-

point-of-failure problem) a trusted third party. In particular, cryptocurrencies such as Bitcoin are

used as a digital means of payment in a distributed network in the absence of a trusted third party.

(Panel (c)).

A cryptocurrency system in a decentralized network typically needs to overcome three challenges:

1. How to establish a consensus in a distributed network?

2. How to discourage double spending behaviors?

3. How to encourage proper transaction validation?

How do cryptocurrencies such as Bitcoin tackle these problems? In the absence of a central au-

thority, the cryptocurrency relies on a distributed verification of transactions, updating and storage

of the record of transaction histories. This necessitates that consensus between the users is main-

tained about the correct record of transactions. This trust in the currency is established by having

a competition for the right to update record. This competition can take various forms. In Bitcoin,

this is through a process called “mining”. Miners (i.e. transaction validators) compete to solve

a computationally costly problem (“proof-of-work”). The winner of this mining process has the
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right to update the record and be the first to propose a new history to the network. The consensus

protocol prescribes that the “longest” history will be accepted as the valid public record. Other

consensus protocol are available such as the proof-of-stake used by Peercoin.

A concern in any cryptocurrency system is the double spending problem: after a transaction, the

buyer attempts to convince the entire network to accept an alternative history in which the payment

was not conducted. When the attack succeeds, the buyer keeps both the balances and the product

while the seller will be left empty handed. The possibility of double-spending can undermine

the usage of the cryptocurrency. This problem is mitigated by the usage of the blockchain and

by introducing confirmation lags. Unlike cash, a cryptocurrency keeps track of the history of

all transactions.4 This is done by forming a blockchain. A block is a set of transactions that

have been conducted between the users of the cryptocurrency. A chain is created from these blocks

containing the history of past transactions that allows one to create a ledger where one can publicly

verify the amount of balances or currency a user owns. Figure 2 illustrates how the blockchain is

updated. The blockchain requires that transactions taking place in different blocks have to be

dynamically consistent.5 If a person attempts to revoke a transaction in the past, he has to solve

for an alternative blockchain consistent with his proposal. This makes it very costly to rewrite the

history of transactions backwards if the chain is long. This feature makes double-spending attacks

costly. In addition, double spending can be discouraged by introducing a confirmation lag into the

transactions. By waiting some blocks before completing the transaction (i.e. delayed delivery of

goods by sellers), it becomes harder to alter transactions in a sequence of new blocks. Figure 3 and

4 illustrate why confirmation lags raise the secret mining burden of a double spender. In general, if

the seller delivers the goods only after observing N confirmations of the payment, then the buyer

needs to solve the proof-of-work for N + 1 consecutive times in order to double spend successfully.

Finally, since transaction validation and mining are costly, a reward structure is needed to in-

centivize honest miners. In Bitcoin, the rewards are financed by the creation of new coins and

transaction fees.

4In this sense, money is merely a partial memory as it only records the current distribution of balances and does

not record how past transacions generate the current distribution.
5For example, if an address transfers d units in block T , it must be the case that the accumulated net flows into

this address from block 0 to block T − 1 is at least d.
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Case 1: No confirmation lag (N=0). Double spending attempt fails. 

 

Case 2: No confirmation lag (N=0). Double spending attempt succeeds. 

 

 

 

Figure 3: Double Spending Attack when N=0
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Case 3: Confirmation lag N=1. Double spending attempt succeeds (with 1‐period secret mining). 

 

 

Case 4: Confirmation lag N=1. Double spending attempt succeeds (with 2‐period secret mining).  

 

 

 

Figure 4: Double Spending Attack when N=1
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n = 0 n = 1 n = 2 ... ... ... ... n = N̄

t t+ 1

Day Market Night Market

Figure 5: Time line

3 Model

3.1 Basic Set-up

Our model bases on the alternating market formulation from Lagos and Wright (2005). This

framework is useful because it allows us to study frictions that give rise to the usage of money

while still keeping the distribution of balances analytically tractable. Time is discrete and denoted

by t = 0, 1, 2, ...There are a large number B of buyers and a large number S = Bσ of sellers, where

σ ∈ (0, 1). In addition, there are also M miners. In each period, a day market first opens and then

the night market opens. The day market is a competitive market for trading a general good h to

replenish balances. The night market is a decentralized market for trading a consumption good x

which is produced by sellers and consumed by buyers. As shown in Figure 5, the night market is

divided into N̄ + 1 consecutive trading sessions: n = 0, 1, ...N̄ with N̄ ≥ 1.6 In the night market,

trades take place bilaterally and are not monitored in the sense that obligations from the trade

cannot be enforced later on. To the contrary, in the night market everyone can trade the general

good. Such trades are centralized and monitored.

3.2 Cryptocurrency

Due to the anonymity in the night market, the exchange of goods necessitates a means of payment

which we assume is a cryptocurrency.7 A cryptocurrency is a digital record-keeping device that uses

balances to keep track of the obligations from trading and that is publicly known to all traders.

A cryptocurrency system is defined by two parameters: money growth rate µ ≥ 0 and transaction

fee charge at a rate τ ≥ 0. As discussed, the digital nature of these balances result in the double-

6The setting with multiple trading sessions allows us to study confirmation lags.
7We assume that the cryptocurrency is the only means of payments available in the night market. For example,

cash is not viable for online trades, and standard electronic payments such as debit or credit cards are not available to

the unbanked. Chiu and Wong (2014, 2015) study the competitioin between cash and e-money in a different setting.
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spending problem. In what follows, we describe the features of a ledger that records the transfers

of these balances.

Aggregate State

Each trader is entitled to a balance. Let mD
t (i) ≥ 0 denote the balance associated with agent i in

the period t day market. We then use SDt = {mD
t (i)} to denote the entire public record of these

balances, called the (aggregate) state. Similarly, mN
t,n(i) ≥ 0 and SNt,n denote the balances and the

state at the beginning of the nth trading session of the period t night market. The economy starts

with a given initial state SD0 .

Payments

We use ∆D
t (i, j) and ∆N

t,n(i, j) to denote respectively day and night transfers of balances from agent

i to agent j and call these transfers payments. A day payment is feasible if

∆D
t (i, j) ≥ 0, (1)

mD
t (i) ≥

∑

j

∆D
t (i, j). (2)

Similarly, a night payment is feasible if

∆N
t,n(i, j) ≥ 0, (3)

mN
t,n(i) ≥

∑

j

∆N
t,n(i, j). (4)

A trader can pay positive amounts to others and the total payments are bounded by the balances

one has accumulated.8 Given any payments the state is then updated in the two markets according

to

mN
t,0(i) = mD

t (i) +
∑

j

∆D
t (j, i)−∆D

t (i, j) + Tt(i), (5)

mN
t,n(i) = mN

t,n−1(i) +
∑

j

∆N
t,n−1(j, i)−∆N

t,n−1(i, j), for n = 1, ..., N̄ (6)

mD
t+1(i) = mN

t,N̄ (i) +
∑

j

∆N
t,N̄ (j, i)−∆N

t,N̄ (i, j) (7)

8Through cryptography, the authenticity of payments is protected by digital signatures corresponding to the

sending addresses. As a result, only the owner of the digital signature can transfer balances to another address. This

gives rise to the non-negativity and the cash-in-advance constraints.
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where T (i) is the transfer of new balances to agent i.

Blockchain

Due to public monitoring, we assume that feasible payments during the day automatically9 update

the aggregate state according to the rule (5). The new state at the start of the night market is thus

given by

SNt,0 = ΨN
0 (SDt ,BDt ) (8)

where BDt = {∆D
t (i, j)} is the entire set of day transfers and is called a block. The update takes

place according to (5).

Payments in the night market, however, enter the state through a process we call mining. When

agent i makes a payment to agent j in the night, he needs to send out an instruction for a feasible

payment ∆N
t,n(i, j) to a pool of miners who compete to update the state with a new block of

feasible payments in session n of the night market. The set of feasible payment instructions BNt,n =

{∆N
t,n(i, j)} is the nth block of period t payments in the night market.

A sequence of blocks {BDt , {BNt,n}N̄n=0}Tt=0 iteratively generates a sequence of states {SDt , {SNt,n}N̄n=0}
T+1
t=0

according to

SNt,0 = ΨN
0 (SDt ,BDt ) (9)

SNt,n = ΨN
n (SNt,n−1,BNt,n−1), for n = 1, ..., N̄ (10)

SDt+1 = ΨD(SNt,N̄ ,B
N
t,N̄ ), (11)

defined according to (5)-(7). We call the sequence of blocks BT = {BDt , {BNt,n}N̄n=0}Tt=0 a blockchain.

Determined by the process of mining, one specific blockchain is used to construct the public state

and can be observed by everyone in the economy at all times.

3.3 Mining

There are M miners performing mining activities to update the public ledger in the night trading

sessions n = 0, ..., N̄ . In each session, miners perform a costly computational task with a random

success rate by investing computing power qn. This task is called the proof of work (PoW). As

9This is without loss of generality and simplifies the analysis. It is straightforward to model the mining process

in the day market.
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specified by the Bitcoin protocol, if the computational power of miner i in session n is qn(i), then

the probability that a particular miner j will be the first one to solve the proof-of-work problem is

given by

ρn(j) =
qn(j)

∑M
i=1 qn(i)

.

In other words, the probability of wining the mining game is proportional to the fraction of com-

putational power owned. We take this feature as given here and, in the appendix, we provide a

micro-foundation for this result. By winning the competition of session n, a miner can update

the blockchain (i.e., appending the nth block to the blockchain) and receives R real balances as a

reward.

We use $n(j) to denote the number of blocks that miner j has already solved by the end of session

n. Define Πn($n−1) as the value function of a miner at the beginning of session n. In the last

trading session N̄ , the value of a miner j who has already solved $N̄−1(j) blocks is

ΠN̄ [$N̄−1(j)] =
β

µ
$N̄−1(j)R+ βΠ′0 + max

qN̄ (j)

[
−qN̄ (j)α+ ρN̄ (j)

β

µ
R

]

where Π′0 is the continuation value in the next period. Here, the miner always receives the rewards

R for the $N̄−1(j) mined blocks. The rewards are discounted by the discount factor β and the

currency growth rate µ. In addition, in the last session, the miner incurs a mining cost qN̄ (j)α and

wins the block with probability ρN̄ (j). For any session n = 1, ..., N̄ − 1, the value function is given

by

Πn[$n−1(j)] = max
qn(j)
−qn(j)α+ [1− ρn(j)]Πn+1[$n−1(j)] + ρn(j)Πn+1[$n−1(j) + 1].

The miner incurs a mining cost qn(j)α to mine in an attempt to increase the number of winning

blocks by 1 with probability ρn(j). In session 0, the value function is

Π0 = max
q0(j)
−q0(j)α+ [1− ρ0(j)]Π1(0) + ρ0(j)Π1(1).

It is straight forward to show that

Π0 =
N̄∑

n=0

[
ρn(j)

β

µ
R− qn(j)α

]
+ βΠ′0

where qn(j) solves ∑M
i=1 qn(i)− qn(j)

[
∑

i 6=j qn(i) + qn(j)]2
β

µ
R = α.

Imposing symmetry, qn(j) = Q for all j, we obtain

αQ =
M − 1

M2

β

µ
R.
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Consequently, the total computing cost incurred by the mining community in session n is

MαQ =
M − 1

M

β

µ
R

The expected value of a miner is

Π0 = (N̄ + 1)

[
Q

∑M
m=1Q

β

µ
R−Qα

]
=
N̄ + 1

M2

β

µ
R+ βΠ′0.

We can always normalize α to 1 by redefining the unit of computer power. To capture the fact

that the mining activities are quite competitive and open to new entrants, we will assume that

M →∞.10 In that case, Π0 converges to zero and the mining costs converges to βR/µ.

Lemma 1. As M →∞, the expected value of miners is Π0 = 0, and the total computing power of

the miners is

C ≡ αMQ =
β

µ
R.

3.4 Double Spending and Mining Rewards

As discussed in previous sections, an important concern in a cryptocurrency system is buyers’

double-spending attempts. In the day market, there is perfect monitoring in the sense the payer

of a payment is liable for their authenticity of the balances. That is, if the balances get lost for

the payee, the payer needs to reimburse the payee for the loss. This assumption rules out double

spending in the day market.11

In the night market, a buyer meets with a seller with probability σ. If they agree to trade, the

buyer needs to make a payment to a seller. To do so, he has to send out an instruction ∆t,0 to the

pool of miners. However, this is insufficient to ensure that the seller receives a payment. A buyer

10The total number of miners is estimated to be within the range of 5000 to 100,000 (https://goo.gl/TPFBvA). In

addition, according to blockchain.info, there are altogether 14 mining pools that indivudally can account for at least

1% of the total hashrate. Finally, it is feasible for miners to use their existing mining capacities to mine different

cryptocurrencies. For example, ASICs (Application-specific integrated circuits) manufactured for Bitcoin can be used

to mine altcoins that use SHA-256 as the hashing algorithm (e.g., Namecoin and Peercoin).
11This reflects the basic premise that certain parties such as merchants accepting a cryptocurrency and using it

could be held legally liable for the losses sustained by other parties. In general, payers in many settings are not fully

anonymous (e.g. the KYC requirement, online wallets transactions, payments to Bitcoin exchanges, payments made

by well-known merchants). Hence, double spenders can be punished either formally (e.g. legal) or informally (e.g.

reputational).
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can engage in secret mining by attempting to mine a block in which his payment did not occur.12

As discussed, a seller can protect himself from not receiving the payment by waiting to deliver the

goods until the payment has been incorporated into the public state at night.13 However, such

confirmation of the payment in the blockchain is not enough. A buyer can secretly mine a different

blockchain which could be released some periods after the seller has delivered the good and replaces

the original blockchain.14

When the secret mining succeeds, the buyer keeps his original balances and the goods while the

seller will be left empty handed. This is called double spending. In response, the seller can choose

to postpone the delivery of the goods and wait for N confirmations. Such a confirmation lag can

potentially deter double spending by the buyer. The idea is that, to undo a transaction with an N

confirmation lag, a dishonest buyer needs to win the mining game N + 1 times in a row. As the

number of lags increases, the total proof-of-work required to revoke a transfer is increasing, making

it more costly for a buyer to double spend.

The investments in mining by miners is therefore important to deter dishonest behavior as it

determines the probability of success for a double spending attack. The incentives in turn depend

on the mining reward R. As in the Bitcoin scheme, we assume that this reward consists of two

components. First, the cryptocurrency can create new balances which are paid to miners that win

the competition to update the blockchain. We denote the (gross) growth rate of new balances by

µ ≥ 1. In addition, a fraction τ ≥ 0 of balances are paid to the successful miner as a fee. We

assume the N̄ + 1 block winners of the night market equally share the total reward. That is

R =
Z(µ− 1) +Dτ

N̄ + 1
.

where Z is the aggregate money balances and D is the aggregate spending in the night market.

12The secret mining can be done either by the buyer himself or by hiring a miner to mine a block with the instruction

that the payment did not occur.
13This can be seen as what is called delivery-vs-payment or a quid-pro-quo exchange.
14Notice that, with such secret mining, the buyer cannot spend the balances of any other agent because, to spend

other agents’ balances, one needs to obtain others’ digital signature. He can only (i) change the payment instructions

of his own transaction ∆t,0(i, j) and (ii) remove other payment instructions ∆t,·(j, i) from being mined – and, hence,

confirmed – in the block. Hence, a buyer trying to double spend has to remove his own payment and all other

payment instructions involving his original balance being spent.
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3.5 Trading

In the day market, all buyers and sellers have a linear technology to produce a numeraire good

which can be used to replenish their balances.

In the night market, each buyer meets with a seller with probability σ in trading session 0. The

buyer would like to consume a good that the seller can produce at unit cost. If they agree to trade,

the seller produces x in trading session 0 and commit to deliver it to the buyer in session N ≤ N̄ .

The buyer’s preferences are given by

εδNu(x)

from consuming x with a confirmation lag of N . The discount factor between two periods is β. The

discount factor across two adjacent trading sessions is δ.15 The random variable εmin ≤ ε ≤ εmax

is known to the trading partners when the buyer enters the day market and is drawn from a

distribution Fε. To trade, the buyer makes a take-it-or-leave-it offer (x, d,N), which specifies a

payment d in real balances for obtaining x goods to be delivered after confirmations of the payment

in N consecutive blocks.

4 Equilibrium

4.1 Day Market

Denote the value function in the night market of a buyer with real balances z and preference shock

ε by v(z; ε). In the day market, a buyer can work to replenish balances subject to a linear disutility

function. The value of a buyer who draws ε is

w(z; ε) = max
z′,h
−h+ v(z′; ε)

subject to

h+ z ≥ z′ ≥ 0

where h is the amount of work at night, z′ is the real balances carried to the night given ε. The

FOC is

µ ≥ v′(z′; ε). (12)

15There are two ways to interpret the discount factor δ: (i) buyers prefer earlier consumption (e.g., δ = β
1

N̄+1 ); (ii)

buyer’s preference will change over time so that the goods will no longer generate utility with probability 1− δ.
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with equality whenever z′(ε) > 0. Linear preferences imply that

w(z; ε) = z + w(0; ε),

w′(z) = 1.

The value function before the realization of ε is

w(z) = Ew(z, ε) = z +W.

where W = Ew(0; ε) is a constant.

4.2 Night Market

In the night market, the buyer makes an offer (x, d,N) to the seller. We call an offer double

spending proof (DS-proof) if the buyer has no incentive to engage in double spending after the

acceptance of the offer. Otherwise, it is a double-spending (DS) offer. To proceed, we first study

the double-spending problem after the terms of trades are agreed. We aim to construct a DS-proof

equilibrium.16 To this end, we first look at the double-spending problem after trade.

Post-trade Double-Spending Problem

Consider a trade with the terms (x, d,N). The buyer will receive the goods in session N when

exactly N confirmations of the payment d have been observed in the blockchain. To double spend,

a buyer can secretly mine an alternative history to undo his payment after he has received the

goods. For such double spending to be successful, he needs to solve the mining game for N + 1

consecutive sessions, starting from session 0 and ending in session N . Specifically, the double

spender needs to be the first one who solves the proof-of-work for all N + 1 sessions. For each of

the first N sessions, the buyer does not broadcast the blockchain immediately so that one of the

miners will update the blockchain and confirm his payment. The buyer broadcasts his solutions

and update the blockchain only after he receives the goods and solves the N + 1th block. When

the double spending attack succeeds, the original payment is cancelled and the N + 1 rewards will

be given to the buyer.

16The Bitcoin system is designed to discourage double spending attacks. In the current system, there is no evidence

for significant double spending activities .
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Given (d,N), the expected gain from an optimal double spending is given by17

D0(d,N) = max
{qn}Nn=0

P
β

µ
[d+R(1 +N)] (13)

−
N∑

n=0

(
n−1∏

t=0

qt
QM + qt

)
qn

where

P =

N∏

n=0

(
qn

QM + qn

)
. (14)

is the probability of success given the miners’ equilibrium mining efforts Q. Again α is normalized

to 1. If D0(d,N) < 0, then the contract is DS proof.

To solve the problem, it is useful to reformulate it in terms of N + 1 sub-problems which take place

in sessions n = 0, ..., N . This is illustrated in Figure 6.

We start from the session when the goods are delivered to the buyer. In session N , the buyer’s

payoff from a successful double spending attack with investment qN is given by

ΛN (qN ; d,N) = ρ(qN )
β

µ
[d+ (N + 1)R]− qN . (15)

The first term captures the expected revenue from double spending. Conditional on having solved

N blocks successfully, with probability

ρ(qN ) =
qN

QM + qN

the miner wins the competition again in the N+1th round so that the buyer can double spend. The

revenue from double spending is given by the original payment in session 0 which in real balances

in the next period is d/µ. Also, the buyer obtains the revenue from all blocks in his chain of length

N + 1. The value in terms of real balances is given by R(N + 1)/µ.

Define

∆ =

[
d

R
+ (N + 1)

]
,

and, as M →∞, the optimal choice with respect to investment in computing power is given by

qN (d,N) =

√
QMR

β

µ
∆−QM =

β

µ
R
[√

∆− 1
]
.

17The quantity of goods x is not an argument of D0 as it affects neither the incentives nor the payoff in a double-

spending attack.
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Figure 6: The Double Spending Problem in the Night Market
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Therefore the probability of a successful double spending in n = N is

ρ(qN ) =
qN

QM + qN
=

√
∆− 1√

∆
.

The expected payoff in session Nt is

ΛN (qN ; d,N) = ρ(qN )
β

µ
[d+ (N + 1)R]− qN

=
β

µ
R(
√

∆− 1)2.

To derive the no-double-spending constraint we work backwards. We start with the expected payoff

for a double spending buyer making an optimal investment qN in session N having been successful

N times

DN (d,N) = max
qN

ΛN (qN ; d,N) =
β

µ
R(
√

∆− 1)2.

Define recursively the expected payoff from double spending in session n for n ∈ {0, . . . , N − 1} by

Dn(d,N) = max
qn

Λn(qn; d,N) = max
qn

ρ(qn)Dn+1(d,N)− qn.

Note that this takes into account that the buyer was n times successful, since if he fails once the

double spend fails as well. Again Dn(d,N) can only be positive if Dn+1(d,N) is positive and qn > 0.

The FOC is given by

qn(d,N) =
√
QM ·Dn+1(d,N)−QM .

By backward induction, we can obtain the following result.

Lemma 2. As M →∞,

DN−s(d,N) =
β

µ
R
[√

∆− (s+ 1)
]2

ρN−s(d,N) =

√
∆− (s+ 1)√

∆− s

qN−s(d,N) =
β

µ
R
[√

∆− (s+ 1)
]

Proof. This is true for s = 0. Suppose the result holds true for s = n− 1. Consider s = n,

qN−n(d,N) =
√
QM ·DN−n+1(d,N)−QM

=
β

µ
R(
√

∆− n)− β

µ
R

=
β

µ
R[
√

∆− (n+ 1)].
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ρN−n(d,N) =
qN−n(d,N)

QM + qN−n(d,N)

=

√
∆− (n+ 1)√

∆− n
.

DN−n(d,N) = ρN−n(d,N)DN−n+1(d,N)− qN−n(d,N)

=

√
∆− (n+ 1)√

∆− n
β

µ
R(
√

∆− n)2 − β

µ
R[
√

∆− (n+ 1)]

=
β

µ
R[(
√

∆− (n+ 1)]2.

It follows immediately that Dn(d,N) is strictly increasing in n and, consequently, qn is increasing

in n. Hence, if it was optimal to engage in secret mining in period n, it is optimal to continue with

secret mining in period n + 1 if one has been successful in period n. So double spending is not

optimal if

q0(d,N) =
β

µ
R
[√

∆− (N + 1)
]
< 0.

This is true when18

√
d

R
+ (N + 1) < (N + 1)

d

R
< (N + 1)N.

Corollary 3. A contract is double spending proof if

d < R(N + 1)N. (16)

When double spending is optimal, its expected return is

D0(d,N) =
β

µ
R
[√

∆− (N + 1)
]2

which is decreasing in R,N and increasing in d.

The unconditional probability of a successful double spending is

P (d,N) =

N∏

n=0

(
qn(d,N)

QM + qn(d,N)

)
=

√
∆− (N + 1)√

∆
.

18In a setting where nb buyers can coordinate in their double-spending attempts, the condition becomes dnb <

R(N + 1)N . As nb →∞, it becomes impossible to prevent double spending. This may suggest that a cryptocurrency

is more secure in a decentralized environment where it is difficult to coordinate a deviation.
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We first define the immediacy and finality of the settlement of a transaction as follows.

Definition 4. The settlement of a transaction (d, x,N) is immediate if N = 0, is delayed if N > 0.

The settlement is final if P (d,N) = 0 and is probabilistic if P > 0.

The above derivation implies the following theorem.

Theorem 5. In a cryptocurrency system, a settlement cannot be both immediate and final.

The inequality (16) provides a condition for (full) finality. Rewards help achieve finality by induc-

ing mining activities which increase the costs of double spending attempts. Finality can also be

supported by either reducing the trade size d or increasing confirmation lag N . Notice that the rela-

tionship between d and N defined by (16) is non-linear. The reason is that, while decreasing d and

increasing N can both reduce the return of a given secret mining effort, increasing N has the extra

effect of making mining more costly by increasing the number of mining periods.19 Given R, there

is a trade-off between trade size d, settlement lag N and finality captured by 1−P (d,N). As shown

in Figure (7), full finality is feasible only for small, sufficiently delayed settlement. Quick settlement

of large transactions is only probabilistic with the probability decreasing in d and increasing in N .

Night Value Function

After solving the post-trade double-spending problem, we can move backward to derive the night

value function. For any given terms of trade (x, d,N) the value of a buyer in the day market with

balances z is given by

v(z; ε) = σ
(
[δNεu(x) +D0(d,N)] + βw(

z − d
µ

)
)

+ (1− σ)βw(
z

µ
)

= β
z

µ
+ σ[

(
δNεu(x) +D0(d,N)]− β d

µ

)
+ βW .

Since the seller has a linear technology to produce x, the seller’s payoff is given by

β
d

µ
(1− τ)[1− P (d,N)]− x,

where P (d,N) is the probability of a successful double spending attack, and τ is the proportional

transaction fee which we assume is paid by the seller.

19The DS-problem (13) indicates that q interacts with d and N in a different fashion: (i) increasing N raises mining

cost at a rate which is linear in q, and (ii) increasing d raises the return at the rate P which is a concave function of

q.
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4.3 Buyers’ Optimal Decision

We can now solve for buyers’ optimal decision regarding money demand z in the day market and

the offer to sellers in the night market. In a monetary equilibrium, z > 0 and condition (12) is

satisfied with equality. Also, since µ ≥ 1 > β, standard arguments suggest that the buyer will not

bring balances that will not be spent in the night market. That is, z = d. So the buyer’s decision

is given by

max
d,N,x

−d+ (1− σ)
β

µ
d+ σ[δNεu(x) +D0(d,N)]

subject to
x

1− τ
µ

β
= d[1− P (d,N)].

The values of D0 and P depend on whether the offer is DS-proof or not:





P (d,N) = D0(d,N) = 0 , if d ≤ R(N + 1)N,

P (d,N) =
√

∆−(N+1)√
∆

and D0(d,N) = β
µR
[√

∆− (N + 1)
]2

, otherwise.

While double spending allows the buyer to receive an additional payoff D0(d,N), it also tightens

the seller’s participation constraint.

Note that the buyer’s problem in general can have multiple maximizers. For example, sometimes

a buyer can be indifferent between a DS and a DS-proof contracts. Similarly, the buyer can be

indifferent between a contract with a long confirmation lag and large consumption and one with

earlier but smaller consumption. Given R, define the set of optimal money demand by ε as Γ(ε;R).

For a given selection from the solution set Γ(ε;R), the aggregate night market spending and money

demand are described by

D = BσE(d) = Bσ

∫ ∞

0
z∗(ε;R)dFε(ε) (17)

Z = BE(z) = B

∫ ∞

0
z∗(ε;R)dFε(ε). (18)

4.4 No Double Spending

We now derive a sufficient condition under which double-spending contracts are dominated in

equilibrium. Define the nominal interest rate as i = µ/β − 1.

23



Lemma 6. Only DS-proof contracts are offered if

δεmaxu
′(x̄1)(1− τ)

3

4
− 1 <

i

σ
(19)

where x̄1 = (1− τ)(β/µ)2R.

How to interpret this condition? Note that in general, the marginal value of an additional unit of

money balances is (proportional to)

−i+ (1− P )σ[δNεu′(x)(1− τ)E(x)− 1]

where

E(x) =
∂x

∂d

d

x

=
∂

∂d
[d(1− P (d,N))]

1

d[1− P (d,N)]

=





1 , if x < x̄

1− d
2R∆ , if x ≥ x̄

is the elasticity of consumption with respect to money balances. When the incentive constraint is

not binding, E = 1. When it is binding, E < 1. Define x̄N as the maximum DS-proof quantity

given N . Evaluating at x̄N ,

E(x̄N ) = 1− N

2(1 +N)

which is a decreasing function with its maximum equals to 3/4 when N = 1. The idea is that

when the incentive constraint is binding, a further increase of the trade size will raise the buyer’s

incentive to double spend after trade, hence lowering the effective value of a marginal dollar.

This condition tends to be satisfied when (i) the cost of bringing the extra money balances is high

(i is high), (ii) the probability of spending that extra balances is low (σ is low), and (iii) the utility

gain from spending that balances is low (δ, εmax are low or x̄ is high).

4.5 Equilibrium

We first define an equilibrium in which the cryptocurrency has a positive value and all trades are

double-spending proof.
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Definition 7. A DS-proof cryptocurrency equilibrium with (µ, τ) is given by offers (x(ε), d(ε), N(ε)),

a money demand z(ε) > 0 and a mining choice such that

1. money demand and the offer maximizes a buyer’s utility;

2. the mining choice maximizes a miner’s utility;

3. the day money market clears;

4. Condition (19) is satisfied.

Notice that nominal balances are growing at rate µ and so do prices. Our definition has only used

real balances which stay constant across time. Finally, we define social welfare as the average utility

per period or

W = Bσ

∫ ∞

0
[δN(ε)εu(x(ε))− x(ε)]dFε(ε)− C(N̄ + 1).

The first term is the trade surplus, while the last term are the aggregate costs of mining.

4.6 Existence

Lemma 8. A DS-proof cryptocurrency equilibrium exists for a sufficiently large B.

This lemma establishes the existence of a monetary equilibrium. There are potentially multiple

equilibria. If we focus on the equilibrium that supports the maximum level of Z (i.e. the equilibrium

with the highest value of money), then we can show that an increase in B will increase the value

of money but also increase the cost of mining.

5 Numerical Analysis based on Bitcoin

5.1 Parameterization

We assume that buyers’ utility function is

u(x) = log(x+ b)− log b

with b ≈ 0. We pick the following parameter values for the benchmark model.
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values targets

β 0.999916553598325 period length = 1 day

δ 0.999999420487088 δ = β1/(1+N̄)

µ 1.0003 money growth rate

τ 0.000088 transaction fee

B 6873428 max. no of average-sized transactions

σ 0.0178 velocity per block (block length = 10 mins)

α 1 normalization

The length of a period is a day and the length of each trading session is 10 minutes (i.e. average

block time). Setting β = 0.9999 gives an annual discount factor of 0.97. The average Bitcoin supply

in 2015 is 14342502.95. So the money growth rate per day in 2015 is µ = (1+25/14342502.95)6×24 =

1.0003. Numbers in the following table are averages in 2015 (Source: blockchain.info).

Per day Per block

No of transactions 122129.7534 848.1232877

Estimated transaction volume (BTC) 254843.1781 1769.744292

Transaction fees (BTC) 22.45900183 0.15596529

We set σ = 0.0178 to match the average fraction of Bitcoins spent per day, and set τ = 0.15596529

/1769.744292 = 0.000088129 to match the transaction fees data. The average transaction size is

τ = 1769.744292 /848.1232877 = 2.086659237. So we set B = 6873428.441 which is the maximum

number of average-sized transactions that the existing stock of Bitcoin can support.20 The distri-

bution F (ε) is set to capture the shape of the empirical distribution of transaction size reported in

Ron and Shamir (2013).

Figure (9) plots the density function of the preference shocks ε and Figure (10) plots the optimal

N for each ε.

5.2 Effects of Money Growth and Transaction Fees

Before deriving the optimal policy (µ, τ), we first study the equilibrium effects of a partial change

in the money growth rate and the transaction fee around the benchmark equilibrium. Given the

20This is quite close to the number of blockchain wallet users which is 5439181 in 2015 (Source: blockchain.info,

year-end number).
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Figure 8: Size Distribution of Bitcoin Transactions (Ron and Shamir, 2013)

10 Dorit Ron, Adi Shamir

scheme actually enables sending micro transactions, which are of the order of
10−8 BTC (this is the smallest fraction into which a BTC can be broken, and
is called a satoshi). When we also consider midsize amounts, we see that 73%
(84%) of the transactions involve fewer than 10 BTC’s. On the other hand, large
transactions are rare at Bitcoin: there are only 364 (340) transactions larger
than 50,000 BTC’s. We have carefully inspected all these large transactions and
describe our findings in the next section.

Larger or equal to Smaller than Number of transactions Number of transactions
in the graph of entities in the graph of addresses

0 0.001 381,846 2,315,582
0.001 0.1 1,647,087 4,127,192
0.1 1 1,553,766 2,930,867
1 10 1,628,485 2,230,077
10 50 1,071,199 1,219,401
50 100 490,392 574,003
100 500 283,152 262,251
500 5,000 70,427 67,338

5,000 20,000 6,309 6,000
20,000 50,000 1,809 1,796
50,000 364 340

It is interesting to investigate the most active entities in the Bitcoin system,
those who have either maximal incoming BTC’s or maximal number of trans-
actions. 19 such entities are shown in Table 7 sorted in descending order of the
number of accumulated incoming BTC’s shown in the third column. The left-
most column associates the entities with letters between A to S out of which
three are identified: B is Mt.Gox, G is Instawallet and L is Deepbit. Eight ad-
ditional entities: F, H, J, M, N, O, P, and Q are pointed out in the graph of
the largest transactions (Fig. 1) which is presented in the next section. The sec-
ond column gives the number of addresses merged into each entity. The fourth
column presents the number of transactions the entity is involved with.

Table 7 shows that Mt.Gox has the maximal number of addresses, but not
the largest accumulated incoming BTC’s nor the largest number of transactions.
Entity A in the first row of Table 7 owns the next largest number of addresses,
about 50% of those of Mt.Gox’s, but received 31% more BTC’s than Mt.Gox.
Deepbit had sent 70% more transactions than Mt.Gox. It is interesting to re-
alize that the number of addresses of 13 of these entities is a fifth or more of
the number of transactions they have executed, which may indicate that each
address is indeed used for just a few transactions. It is also clear that six out
of the 19 entities in the table have each sent fewer than 30 transactions with a
total volume of more than 400,000 BTC’s. Since these entities were using large
transactions, we were able to isolate them and to follow the flow of their trans-

Figure 9: Preference Shock Distribution f(ε)
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Figure 11: Effects of money growth
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benchmark level of τ , Figure (11) shows the effects of µ on aggregate trade, average confirmation

lags, utility, welfare, rewards and mining costs. By inducing mining activities, a higher µ lowers

confirmation lags but increases inflations. The net effect on consumption and utility is positive.

Also, a higher µ raises rewards, computational efforts and overall mining costs. The former effect

improves welfare while the latter effect reduces welfare. So the two effects result in a hump shape

response of welfare to money growth. Positive inflation is optimal.

Given the benchmark money growth, Figure (12) shows the effects of τ . By inducing mining

activities, a higher τ lowers confirmation lags but also distorts consumption. The net effect on

consumption and utility is negative, because the benchmark µ is already rather high. Also, a

higher τ raises rewards, computational efforts and overall mining costs. Given these two negative

effects, τ is always welfare reducing. Given the benchmark µ, zero τ is optimal.

5.3 Efficiency of Cryptocurrency Systems

Given the underlying preference shocks, Table 1 compares the welfare costs (as a fraction of First-

best consumption) under different cash and cryptocurrency systems. A cash system under the
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Figure 12: Effects of transaction fees
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Table 1: Welfare Comparison between Cryptocurrency and Cash Systems

Welfare Cost (% of comsumption)

Cash (Friedman Rule) 0.000%

Cash (2% inflation) 0.003%

Bitcoin (benchmark) 1.410%

µ− 1 = 9.5%, τ = 0.0088% mining cost: $1.57 billions

Bitcoin (optimal policy) 0.080%

µ− 1 = 0.17%, τ ≈ 0.0000% mining cost: $27.73 millions
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Table 2: Welfare Comparison between Retail and Large-value Systems

Retail Payments Large Value Payments

(US Debit cards) (Fedwire)

avg transaction size $38.29 $6552236

annual volume 59539 millions 135 millions

optimal µ 0.032% 0.58%

optimal τ 0% 0.0021%

confirmation lag 2 mins 13 mins

welfare loss 0.0006% 0.59%

mining cost (per year) $3.73 millions $18.92 billions

Friedman rule has zero welfare costs. A cash system under 2 percent money growth rate generates

a very small welfare cost of 0.003%. In contrast, the cryptocurrency system welfare is much less

efficient, generating a welfare loss of 1.4%. The main source is the huge mining costs, which

is estimated to be 1.57 billions USD per year. It is inefficient to set the money growth rate and

transaction fees too high. The optimal policy is to reduce inflation and transaction fees substantially

to discouraging mining. In addition, the optimal policy should rely on money growth instead of

transaction fees. The reason why inflation tax is more efficient is that it is paid by all buyers while

transaction fees are paid only by traders who are liquidity constrained.

5.4 Best Usage of Cryptocurrency Technology

We now evaluate the efficiency of using the cryptocurrency system for retail and large-value set-

tlement systems. In Table 2, the first column reports the case when we use 2014 US debit cards

payment data to calibrate the model. A period is set to be 30 minutes and the block length is 1

minute. First of all, we pick B = 30.16 millions to match the number of debit cards.21 and set

σ = 0.540853348 to match the volume of transactions per card per day. Finally, ε is picked so

that the average size of transaction equals $38.2890. In the second column, we try to calibrate the

model to match Fedwire data. We assume B = 7866 to match the number of participants in 2014,

and set σ = 0.9795 which is the average volume of transactions for a participant in 30 minutes.

21Source: http://www.bis.org/cpmi/publ/d152.pdf
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Again, ε is chosen to match the average transaction size.

Recall that the no-double-spending constraint is

d ≤ RN(1 +N).

Mining is a public good (captured by R = Z[(µ − 1) + στ ]), while double spending depends on

individual incentives to reverse a particular transactions (captured by d). This implies that a

cryptocurrency works best when the volume of transactions is larger relative to the individual

transaction size. As shown in the above table, in a retail system the average transaction size is

much smaller and the volume is much bigger than in a large-value payment system. As a result,

under the optimal design, the required money growth and transaction fees are both lower while the

confirmation lag is also shorter. Therefore, the welfare cost and the actual mining cost are both

significantly lower.

6 Alternative Consensus Protocols

In this section, we study whether replacing proof-of-work by alternative consensus protocols can

improve efficiency.

6.1 Proof of Stake

Under the proof-of-stake (PoS) protocol, the probability that a cryptocurrency holder is granted

the right to receive the newly issued currencies (called “minting”) and to update the blockchain is

proportional to the fraction of currency held. Specifically, we assume that the probability that an

agent i wins a block in the night market is equal to

z(i)

Z

where z(i) is the balances that agent i brought from the day market and Z is the total balances.

Day Value Function

The day value function is given by

w(z; ε) = max
d̂,d,h
−h+ v(d̂, d; ε) (20)
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subject to

z + h ≥ d̂+ d (21)

where h is the amount of work in the day, d is the real balances to be spent in the night market (if

there is a match), and d̂ is the real balances that will not be spent in the night but carried to the

next day. The only reason for carrying d̂ is to increase the chance of wining the block. The FOC is

1 ≥ ∂

∂d̂
v(d̂, d; ε)

1 ≥ ∂

∂d
v(d̂, d; ε)

with equality whenever money holdings are positive. Note that

w(z) = z +W ,

w′(z) = 1.

where W is a constant. We want to find a condition under which d̂ = 0.

Night Value Function

The night value function is

v(d̂, d) =
β

µ
(d̂+ d) +

d̂+ d

Z
(N̄ + 1)

β

µ
R

+σ[δNεu(x)− β

µ
d] + σ

(d̂+ d)N+1

ZN+1

β

µ
d+ βW.

Here, the first term represents the continuation values of balances in the next day. The second term

is the expected minting rewards from N̄+1 blocks. When there is a match, the third term captures

the buyer’s trade surplus and the fourth term is the expected reward from double spending. Here

we assume that if an agent wins a block, he can claim the rewards even when the double-spending

attack fails. If we relax this assumption, the incentive to double spend will be even lower.

In equilibrium, the participation constraint of the seller is

x =
β

µ
d(1− τ)(1− (d̂e + d)N+1

ZN+1
).

Here we use d̂e to denote the equilibrium value of d̂. Since d̂ is not observable by the seller, its

value does not directly affect x. Of course, in equilibrium d̂e = d̂.

Incentive Constraint
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Given a contract (x, d,N), we now consider the buyer’s decision on the balances d̂.

max
d̂
−d̂+

β

µ
(d̂+ d) +

d̂+ d

Z
(N̄ + 1)

β

µ
R

+σ[δNεu(x)− β

µ
d] + σ

(d̂+ d)N+1

ZN+1

β

µ
d+ βW.

The FOC is

−1 +
β

µ
+

1

Z
(N̄ + 1)

β

µ
R+ σ

(N + 1)(d̂+ d)N

ZN+1

β

µ
d ≤ 0,

or simply

−i+
1

Z
(N̄ + 1)R+ σ

(N + 1)(d̂+ d)N

ZN+1
d ≤ 0.

Since R = Z[στ+(µ−1)]
N̄+1

, the condition becomes

−i+ [στ + (µ− 1)] + σ
(N + 1)(d̂+ d)N

ZN+1
d ≤ 0. (22)

When this is satisfied with strict inequality, we have d̂ = 0.

We now look at the choice of d:

max
d
−d+

β

µ
(d̂+ d) +

d̂+ d

Z
(N̄ + 1)

β

µ
R

+σ

[
δNεu

(
β

µ
d(1− τ)(1− (d̂e + d)N+1

ZN+1
)

)
− β

µ
d

]
+ σ

(d̂+ d)N+1

ZN+1

β

µ
d+ βW.

Therefore, the FOC is

−1 +
β

µ
+

1

Z
(N̄ + 1)

β

µ
R+ σ

(N + 1)(d̂+ d)N

ZN+1

β

µ
d

+σ
β

µ

[
δNεu′[x(ε)](1− τ)

(
1− (d̂e + d)N+1 + d(N + 1)(d̂e + d)N

ZN+1

)
− 1

]
+ σ

(d̂+ d)N+1

ZN+1

β

µ
= 0,

implying

−i+ [στ + (µ− 1)] + σ
(N + 1)(d̂+ d)N

ZN+1
d (23)

+σ

[
δNεu′[x(ε)](1− τ)

(
1− (d̂e + d)N+1 + d(N + 1)(d̂e + d)N

ZN+1

)
− 1

]
+ σ

(d̂+ d)N+1

ZN+1
= 0.

Combining conditions (22) and (23), we have d̂ = 0 when

δNεu′[x(ε)](1− τ)

(
1− (d̂e + d)N+1 + d(N + 1)(d̂e + d)N

ZN+1

)
− 1 +

(d̂+ d)N+1

ZN+1
> 0. (24)
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Below, we want to show that, when B → ∞, we have d/Z → 0 for τ = 0, N = 0, µ = 1, d̂ = 0.

Note that the payoff of a buyer who carries balances z into the night market is bounded by

v(z; ε)− v(0; ε)− z < σ (εu(x∗ε)− x∗ε)− (
β

µ
− 1)z.

Since µ > β, there exists a maximum level z̄ of balances any buyer would consider carrying into

the night market. By the cash-in-advance constraint, we have that d ≤ z ≤ z̄. Therefore,

d

Z
≤ z̄

Z
=

z̄

BE(d(ε))

where d(ε) is the equilibrium money demand for ε when τ = 0, N = 0, µ = 1,d/Z = 0. That is,

1

β
− 1 = σ[εu′(

β

µ
d)− 1].

Obviously, when B →∞, d
Z → 0. The LHS of condition (24) becomes

εu′[x(ε)]− 1 =
1− β
βσ

,

which is obviously positive. Hence it is optimal for agents to hold d̂ = 0. Therefore, when B →∞,

PoS supports the best possible allocation with τ = 0, N = 0, µ = 1. Since there is no mining cost,

the welfare must be higher than that under PoW.

Theorem 9. As B →∞, PoS strictly dominates PoW. Settlement is immediate and final.

This theorem states that, when the economy is sufficiently large, a cryptocurrency with PoS is as

efficient as a cash system with zero inflation. By setting µ = 1 and τ = 0, the minting rewards

become zero. When the economy is sufficiently large, the probability that an individual buyer will

be chosen to update the block converges to zero. As a result, there is no incentives to double spend

even when N = 0.

6.2 Practical Byzantine Fault Tolerance (To be added)
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7 Appendix

7.1 Micro-foundation for the proof-of-work problem

Miners perform their mining between trading sessions. By investing computing power q(m), the

probability that a miner m can solve the computational task within a time interval t is given by

an exponential distribution with parameter µm

F (t) = 1− e−µmt

where µm = q(m)/D. The parameter D captures the difficulty of the proof-of-work controlled by

the system. The expected time needed to solve the problem is thus given by

D

q(m)
.

Aggregating over all M miners, the first solution among all miners, min(τ1, τ2..., τM ), is also an ex-

ponential random variable with parameter
∑M

m=1 µm. Hence the expected time needed to complete

the proof-of-work by the pool of miners is22

D
∑M

m=1 q(m)
.

Furthermore, any particular miner m will be the first one to solve the proof-of-work problem with

probability

ρn =
q(n)

∑M
m=1 q(m)

.

7.2 Proof of Lemma 6

DS-proof contract

Fix N . The optimal DS-proof contract is a solution to

max
d,x
−d+ (1− σ)

β

µ
d+ σδNεu(x) (25)

22In practice, the parameter D is often adjusted to maintain a constant time for completing the proof-of-work

problem given any changes in the total computational power.
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subject to

x

1− τ
µ

β
= d (26)

d ≤ R(N + 1)N (27)

Note that the participation constraint of the seller is always binding.

If the incentive constraint is not binding, then the FOC is then given by

1 =
σ

i
[δNεu′(x)(1− τ)− 1], (28)

where i = µ/β − 1 is the nominal interest rate. We denote this solution by (x∗, d∗) where it is

understood that the solution depends on N .

If the incentive constraint is binding, then we have that

d̄ = R(N + 1)N (29)

x̄(N) =
β

µ
(1− τ)R(N + 1)N (30)

and

1 <
σ

i
[δNεu′(x̄(N))(1− τ)− 1] (31)

We denote this solution by (x̄, d̄) where it is understood that the solution depends on N .

DS contract

Fix N . The optimal DS contract is a solution of the problem

max
d,x
−d+ (1− σ)

β

µ
d+ σ

(
δNεu(x) +D0(d,N)

)
(32)

subject to

x

1− τ
µ

β
= d(1− P (d,N)) (33)

1− P (d,N) =
(N + 1)√

∆
(34)

d ≥ R(N + 1)N (35)

Note that the participation constraint for the seller is binding again.
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Some preliminaries first.

∂D0(d,N)

∂d
=
β

µ
P (d,N) (36)

∂P (d,N)

∂d
=

1

2R∆
(1− P (d,N)) (37)

∂d(1− P (d,N))

∂d
=

(
1− d

2R∆

)
(1− P (d,N)) (38)

We look next at the function d(1 − P (d,N)). First, note that this expression is only valid when

d ≥ d̄. Its minimum is achieved at d̄. It is strictly increasing in d and strictly concave.

Differentiating the objective function w.r.t. to d, we obtain up to a factor of β
µ

−i+ σ(1− P (d,N))

(
δNεu′(x)(1− τ)

(
1− d

2R∆

)
− 1

)

Case 1:

Suppose now that for a given N we have x∗ < x̄, that is at the best DS-proof contract the constraint

is not binding.

Since (1− P (d,N)) < 1 and (1− d/(2R∆)) < 1, we have immediately that the objective function

is decreasing in d. Hence, the best DS contract has d = d̄. But this is worse than (x∗, d∗).

Case 2:

Suppose now that for a given N we have x̄ < x∗ so that the constraint is binding for the optimal

DS-proof contract.

Note first that the objective function is strictly concave. This implies that there is a unique

maximizer and – by the previous argument – the solution needs to satisfy x̂ ∈ [x̄, x∗).

A sufficient condition is thus that the objective function is decreasing at x̄. The first-order condition

at x̄ is given by

−i+ σ

(
δNεu′(x̄)(1− τ)

(
1− 1

2

N

N + 1

)
− 1

)
(39)

Finally, note that this equation is strictly decreasing in N as u′(x̄) is decreasing in N . Hence, a

sufficient condition is that the objective function is decreasing at N = 1 and d̄ or, equivalently, that

δεu′[(1− τ)(β/µ)2R](1− τ)
3

4
≤ i+ σ

σ
.
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So we can conclude that DS is never optimal when

δεmaxu
′(x̄(1))(1− τ)

3

4
− 1 <

i

σ

where x̄(1) = (1− τ)(β/µ)2R.

7.3 Proof of Lemma 8

We briefly sketch the proof here. We first show that the individual money demand given R,

z∗(ε;R), is an upper-hemicontinuous correspondence function. Since integration preserves upper-

hemicontinuity, the aggregate money demand correspondence

SZ(R) = {B
∫ ∞

0
z∗(ε;R)dFε(ε)| z∗(ε;R) ∈ Γ(ε;R)}

is also upper-hemicontinuous. Note that in a symmetric equilibrium where agents of the same type

choose the same money demand, this set is non-convex in general. However, we can convexify it by

allowing agents of the same type to pick asymmetric choices. As a result, the equilibrium money

demand becomes the convex hull

S̃Z(R) = conv[SZ(R)] = {B
∫ ∞

0

|Γ(ε;R)|∑

i=1

θi(ε;R)z∗(ε;R)dFε(ε)|θi(ε;R) ≥ 0,

|Γ(ε;R|∑

i=1

θi(ε;R) = 1, z∗(ε;R) ∈ Γ(ε;R)}.

Define a correspondence function

Ω(R) = B
[(µ− 1) + στ ]

N̄ + 1
S̃Z(R),

which, taking R as exogenous, gives the per block mining reward generated by agents’ choices.

Next, we want to apply Kakutani’s fixed point theorem to show existence: Let SR be a non-empty,

compact and convex subset of some Euclidean space Rn. Let Ω : SR → 2SR be a set-valued function

on SR with a closed graph and the property that Ω(R) is non-empty and convex for all R ∈ SR.

Then Ω has a fixed point.

We do it in a few steps:

1. Define a lower bound for SR. Pick a small Rmin > 0. We have z∗(ε;Rmin) > 0 for all ε. We

can then pick B sufficiently large so that

B inf
R≥Rmin

{ [(µ− 1) + στ ]

N̄ + 1
S̃Z(R)} > Rmin.

We denote this as B̄. This ensures that for all R ≥ Rmin, Ω(R) > Rmin.
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Ω(R)

Ω(R) = R

[ ]
]

[

︸ ︷︷ ︸
SR

Figure 13: Ω(R)

2. Define an upper bound for SR. Set B = B̄. Notice that the net surplus of a buyer bringing

balances z into the night market is bounded by

βσ[εu(x∗)− x∗]− (1− β

µ
)z.

Since µ ≥ 1 > β, there exists a maximum level z̄(ε) of balances any buyer would consider

carrying from the day market. Therefore, for all

R,Ω(R) ≤ Rmax ≡ B̄
[(µ− 1) + στ ]

N̄ + 1

∫ ∞

0
z̄(ε)dFε(ε).

3. Define SR = [Rmin, Rmax]. It is a non-empty, compact and convex subset. By construction,

for any R ∈ SR, Ω(R) ⊂ 2SR .

4. Since Ω(R) is a non-empty, closed and convex set for all R, and Ω is upper hemicontinuous,

we know that Ω(R) has a closed graph.

5. Therefore, Ω has a fixed point, which defines a (potentially asymmetric) cryptocurrency

equilibrium.

�
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