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An estimated 74% of adults in the United States access the Internet, with up to 80% of them 

looking for health information online. However, only 12% of US adults are assessed to be 

proficient in health literacy to meaningfully interpret health information. Billions of individuals 

worldwide access healthcare information on social media platforms, where they may be exposed 

to misleading, harmful, or irrelevant information. Such lack of gatekeeping by social media 

platforms has had serious adverse effects on public health. Organizations such as the US National 

Academy of Medicine (NAM) and the World Health Organization (WHO) have highlighted the 

importance of prescriptive guidelines for technology-enabled solutions for identifying credible 

sources of health information on social media. The availability of digital trace data collected from 

social media usage and the ubiquity of information search mediated by algorithms necessitates a 

better understanding of content moderation challenges and prescriptive interventions that harness 

human intelligence into machine learning. In 2021, the US Surgeon General’s advisory identified 

that social media platforms urgently need to amplify high-quality health information. We draw on 

the Patient Education Material Assessment Tool (PEMAT), a systematic approach for audio-visual 

educational materials assessment, to develop a method to assess the understandability of videos 

from a patient education perspective. Extracting video features and metadata from YouTube, we 

develop a human-in-the-loop assessment that explicitly focuses on the human algorithm interaction 

combining PEMAT-based patient education constructs, annotations from domain experts, and co-

training methods from machine learning to assess the understandability of diabetes videos. We 

further examine the impact of understandability on several dimensions of engagement with videos. 

Implications for research and practice are discussed. 
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1. Introduction 

The World Health Organization (WHO) defines health literacy as "The cognitive and social skills 

which determine the motivation and ability of individuals to gain access to understand and use 

information in ways which promote and maintain good health." According to the National 

Assessment of Adult Literacy (Kutner et al. 2006), only 12% are considered proficient in their 

ability to meaningfully interpret health information. Recently, a large-scale study assessing Covid-

19 related health communications from state and federal agencies found that most information, 

including those from CDC and federal agencies, exceeded recommended reading levels (Mishra 

& Dexter 2020). In the absence of evidence-based interventions, health consumers may be steered 

towards dubious medical advice or lack awareness of how to integrate medical advice obtained 

from social media into their daily routines.  

Patients traditionally received health directives from clinicians through verbal advice and 

printed pamphlets. However, adherence to such sources demands a high level of participation and 

engagement (Jordan et al. 2008). Educational videos provide both visual and auditory information, 

have the potential to reach many people, and provide a consistent message in a cost-effective 

manner (Dahodwala et al. 2018). Research has shown that video-based health education, when 

presented in an understandable way, is easier to absorb for patients as compared to other patient 

educational methods (Abed et al. 2014). However, it is prohibitively expensive for healthcare 

organizations to provide such content on a spectrum of health conditions. Further, patients 

diagnosed with chronic conditions often need advice on diet, nutrition, exercise, and lifestyle 

choices in addition to medical advice. The Internet has reduced much of the information 

asymmetry between healthcare practitioners and consumers by providing multiple avenues 

whereby patients can educate themselves with user-generated content.  
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The plethora of user-generated healthcare content on platforms such as YouTube offers the 

potential to provide relevant and actionable healthcare advice. However, recommending patient 

education materials on digital platforms is significantly more challenging than, say, recommending 

news articles or books. The acceptance and usage of recommended videos need to be assessed on 

multiple criteria, such as understandability, video production quality, and credibility of the video 

and content creators, among others. While several patient education guidelines promote 

understandability and clear communication (Baur & Prue 2014; Shoemaker et al. 2014), it is not 

clear whether digital platforms and health providers are following such guidelines for information 

dissemination online. The US National Academy of Medicine (NAM) and the World Health 

Organization (WHO) have called for prescriptive guidelines for identifying credible sources of 

health information on social media.  

With patients regularly turning to YouTube for health information and advice, pointing 

patients toward understandable video materials is one mechanism to bridge the vast divide in 

health literacy and to enhance a patient’s ability to self-manage their medical conditions. Agency 

for Healthcare Research and Quality (AHRQ) defines patient educational materials as 

understandable when consumers of diverse backgrounds and varying levels of health literacy can 

process and explain key messages. The Patient Education Material Assessment Tool (PEMAT) is 

a systematic approach developed by the Agency of Healthcare Research and Quality (AHRQ) to 

evaluate and compare the understandability and actionability of patient educational materials.  It 

is designed to be used by healthcare professionals and help determine whether patients will be able 

to understand and act on information. PEMAT is the only guideline that includes a measure of 

objective assessment of audiovisual (A/V) materials (Vishnevetsky et al. 2018) and therefore has 

been widely adopted in evaluating patient educational materials in video format.  
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With the vast number of user-generated videos available online, we cannot rely on 

healthcare professionals to manually annotate all the videos. Machine learning based approaches 

can reduce the amount of effort from healthcare professionals and perform the evaluation in a 

scalable manner. We envisage the role of human-in-the-loop artificial intelligence as that of 

elevating input from healthcare professionals from manual annotators to that where human 

judgment and domain knowledge from experts can guide the development of algorithms for the 

delivery of healthcare information on social media platforms. We use a combination of human and 

algorithmic intelligence in an application area of AI for social good by examining evidence-based 

guidelines for retrieving health information on social media. Extracting video features and 

metadata from YouTube, we employ co-training methods to assess the understandability of a video 

according to PEMAT guidelines. The co-training approach employed in this paper allows us to 

implement disagreement-based semi-supervised methods and human intelligence into a unified 

framework. 

We make three contributions to the literature in a multi-disciplinary area of digital health 

literacy and human-algorithm connection. Our first contribution is in using AI methods for social 

good to posit the understandability of healthcare information as an artifact that bridges a gap 

between access to information and its understandability (Laurence et al. 2009). Most existing work 

in health communication and patient education has not examined how health communications need 

to evolve in the era of algorithmic engagement. We have engaged substantially with agencies and 

experts in health communication and public health in creating an algorithmic framework that 

incorporates human intelligence in building an evidence-based guideline that can address 

challenges in health literacy. Our second contribution is the development of a human-in-the-loop 

augmented intelligence method that incorporates human judgment and expertise into algorithms. 
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In characterizing the search for cognitively demanding information on social media, we combine 

human cognitive capabilities into artificial intelligence (AI) systems by developing an augmented 

intelligence approach that combines human intelligence with AI. Our approach utilizes inputs from 

domain experts and PEMAT-based patient education constructs combined with machine learning 

methods to build an automated tool that analyzes the understandability of YouTube videos from 

the perspective of patient education. The third contribution is to enable a better understanding of 

how patients understand healthcare information by assessing the impact of the understandability 

of user collective engagement on the video. Our findings can offer policy implications for the 

utilization of healthcare resources and the quality of delivered care. 

2. Literature Review and Research Questions 

2.1 AI for Social Good  

Advances in machine learning and artificial intelligence offer opportunities to develop better tools 

and solutions to help address some of the most pressing issues in the world and deliver positive 

social impact in accordance with the priorities outlined in the United Nation’s 17 Sustainable 

Development Goals (SDGs)1 (Tomašev et al. 2020). Initiatives relying on artificial intelligence 

(AI) to deliver socially beneficial outcomes – AI for social good (AI4SG) are on the rise. AI4SG 

facilitates the attainment of socially good outcomes that were previously unfeasible, unaffordable, 

or unachievable with machine learning and artificial intelligence methods (Cowls et al. 2021). 

Cowls et al. (2021) formally defined AI4SG as “the design, development, and deployment of AI 

systems in ways that help to (i) prevent, mitigate and/or resolve problems adversely affecting 

human life and/or the wellbeing of the world, and/or (ii) enable socially preferable or 

environmentally sustainable developments, while (iii) not introducing new forms of harm and/or 

 
1 https://sdgs.un.org/goals 
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amplifying existing disparities and inequalities. Despite the apparent appeal of using the latest ML 

methods, which may require a large amount of high-quality training data, AI4SG projects may 

sometimes benefit from simpler solutions, aiming to solve the problem at hand with minimum 

overall complexity.  Such solutions tend to be faster to implement, easier to maintain, interpret and 

justify—and are sometimes sufficient to solve valuable practical problems (Tomašev et al. 2020).  

Ensuring healthy living and promoting well-being for all at all ages are among the SDGs set by 

the UN. AI can provide much-needed support to improve population health by enhancing the 

population's health literacy level and providing high-quality health information effectively and 

efficiently.  

2.2 Health Literacy as a Societal Challenge  

Health literacy is well recognized as a challenge for both individual and public health, with many 

adults lacking the requisite skills to engage successfully in the management of their healthcare 

(Mackert et al. 2016, Moorehead et al. 2013). Providing access to high-quality health information 

and patient education materials is critical to patient empowerment and building societal resilience. 

It is estimated that 74.4% of the population in the U.S. seek health information online (Rutten et 

al. 2019). The availability of health information online is thought to have a positive influence on 

health literacy. However, the actual impact is more nuanced.  For health consumers engaging in 

searches for health information on digital media platforms, health literacy divides can be 

exacerbated both by their own lack of knowledge and by algorithmic recommendations, with 

results that disproportionately impact minorities and low health literacy users (Agarwal et al. 

2020). Health consumers with higher health literacy levels were found to seek online health 

information more frequently than those with lower literacy levels. Besides, consumers with higher 

health literacy reported fewer difficulties (e.g., less effort to get the information, less concern about 
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health information quality, and fewer difficulties in understanding health information) 

(Manganello et al. 2017). To bridge the gap in health literacy and improve health equity, it is 

important to promote understandable and high-quality health information online.  

Prior studies have employed domain experts, such as health professionals, to evaluate the 

quality of online medical information (C.L. et al. 2011, Dawson et al. 2011). Studies have 

examined the understandability of online patient educational materials, from those created by 

professional societies to user-generated content (Kunze et al. 2020, Rooney et al. 2020), using 

guidelines such as the Clear Communication Index from the Center for Disease Control and 

Prevention (CDC)2 (Johnson et al. 2020), PEMAT from Agency of Health Research and Quality 

(Salama et al. 2020), Benchmark criteria from Journal of American Medical Association (Kunze 

et al. 2020), Suitability Assessment of Materials (SAM) (Salama et al. 2020), Global Quality Score 

(Kunze et al. 2020), and readability indices (Rooney et al. 2020). Table 1 below summarizes this 

literature.  

Table 1. Summary of studies evaluating online health information 
Study Data  Assessment Tool Focus  Finding 

Kang and 

Lee 2019  

85 Videos from 

hospital 

websites  

PEMAT Understandability, 

actionability, and 

usefulness   

The average understandability rating is 

49.5% and the actionability rating is 

31.4%.  

The average usefulness score is 4.3 out of 

7 point scale.  

McClure et 

al. 2016 

9 print and 4 

online patient 

education 

materials 

SMOG, 

PMOSE/IKIRSCH, 

PEMAT, CDC Clear 

Communication 

Index 

The health 

literacy level of 

the publicly 

available patient 

education 

materials  

Reading levels of available patient 

education materials exceed the 

documented average literacy level of the 

US adult population. 

Johnson et 

al. 2020 

 

 

4 written patient 

education 

materials for 

sickle cell 

disease  

(1) the Flesch 

Reading Ease 

Formula, (2) the 

Flesch–Kincaid 

Reading Tool, (3) 

SMOG Readability 

Formula, (4) the 

PEMAT, (5) CDC 

Readability, grade 

level, 

understandability, 

and actionability  

Literacy levels of the patient education 

materials were higher than recommended 

standards. 

 
2 https://www.cdc.gov/ccindex/index.html 
 

https://www.cdc.gov/ccindex/index.html
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Clear 

Communication 

Index, and (6) 

PMOSE/IKIRSCH 

tool. 

 

Rooney et 

al. 2020 

 

54 patient 

education 

materials from 

high-performing 

neurosurgery 

hospitals and 

professional 

societies  

6 readability indices  Readability  Publicly available online patient 

educational materials for stereotactic 

radiosurgery are written at reading levels 

above national recommendations. 

Furthermore, many lack information 

identified as important by patients. 

Williams et 

al. 2016 

 

950 written 

patient 

educational 

materials 

Three guidelines 

from AMA, CDC, 

and NIH for written 

materials  

Readability, 

structure, and 

presentation  

Materials are consistently written at a 

readability level that is poorly suited for 

patients with low health literacy. 

Kunze et al. 

2020 

 

50 YouTube 

videos of 

meniscus  

JAMA benchmark 

criteria, and Global 

Quality Score 

Quality and 

reliability  

Information on the meniscus found in 

YouTube videos is of low quality and 

reliability. 

Sanderson 

et al. 2016 

 

One YouTube 

video about 

Genome 

Sequencing  

N/A  Understandability 

and knowledge 

increased  

79% reported the video was easy to 

understand, satisfaction scores were high, 

and knowledge increased significantly. 

 

Salama et 

al. 2020 

53 YouTube 

videos about 

hypospadias 

PEMAT Understandability 

and actionability 

Only 5.6% of videos are understandable, 

and 15.1% are actionable. The vast 

majority of hypospadias-related YouTube 

content is not appropriate for users with 

low health literacy 

Desai et al. 

2013 

 

 

607 videos from 

Mayo Clinic’s 

social media 

health network 

Suitability 

Assessment of 

Materials (SAM) 

Suitability and 

user engagement 

Healthcare organizations produce very few 

videos with high SAM scores. An optimal 

video is no more likely to engage users 

than less optimal videos. 

 

Readability, content organization, and presentation are critical to healthcare consumers.  These 

factors impact how patients consume educational materials and whether the medical information 

can be delivered effectively. There have been a host of studies assessing the readability, suitability 

or comprehensibility of patient education materials, and the evidence is clear and consistent that 

most education materials are too complicated for patients to comprehend (Sørensen et al. 2012), 

especially for those with low health literacy (Smith et al. 2014).  

Prior studies have relied on the judgment of domain experts such as health professionals to 

evaluate medical information online (Backinger et al. 2011; Dawson et al. 2011). Content rated by 
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an expert (such as medical or health professional staff) is the most common approach to assessing 

videos focused on health education. Health and medical websites are increasingly encouraged to 

apply for quality certificate assessments as proof of evidence that they are reliable sources of 

information. However, as the volume of online health information grows exponentially, using 

expert evaluation is not a sustainable long-term solution.  

2.3 Social Media Analytics for Social Good 

Social media analytics, enabled by machine learning and artificial intelligence, have yielded a rich 

understanding of societal outcomes ranging from health, business, and governance issues 

(Anderson et al. 2021, Van Den Beemt et al. 2020, Liu et al. 2020, Stier et al. 2020). Research in 

business disciplines has concentrated on brand-related activities on social media (Ghiassi et al. 

2016, Gunarathne et al. 2017, Qiu et al. 2015, Xie and Lee 2015), opinion formation (Munger and 

Teredesai, Munzert et al. 2021), content contribution (Tang et al. 2012) and diffusion (Susarla et 

al. 2016, Yoo et al. 2019).   

Social computing that facilitates collective action and user-centric interaction has led to 

enormous changes in the organization of content production industries (Dellarocas et al. 2013). 

Prior literature on User-Generated Content (UGC) has examined motives for participation and the 

economic value of such content (Ghose and Ipeirotis 2011). However, the difference is that visual 

social media is characterized by different patterns of user engagement (Liu et al. 2020) and 

different pathways by which influence and susceptibility operate (Susarla et al. 2016). There is 

limited inquiry into evidence-based research on how to make social media relevant and usable for 

our daily lives, especially in the context of health and wellness.  

While people have relied on traditional media (such as the library, books, brochures, and 

magazines) or healthcare professionals as their primary source of health information (Baker et al. 
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2003, Dolan et al. 2004, Dutta-Bergman 2004), social media has caused a sea change in providing 

health information for improving health literacy. The rise of user-generated medical information 

disseminated through YouTube, which is the largest video-sharing social media platform, can 

potentially bridge this gap by providing information in a rich, visual format that may be easier to 

comprehend and adhere to (Backinger et al. 2011; Chatzopoulou et al. 2010). YouTube hosts more 

than 100 million videos providing information on the pathogenesis, diagnosis, treatments, and 

prevention of various medical conditions (Madathil et al. 2015). For patients who need complex 

medical information, healthcare advice in a video format may make it more convenient, 

understandable, and actionable and improve the efficiency of care. While this plethora of user-

generated content can be leveraged by patients to improve health literacy and adherence to 

treatments, criticisms of social media use in healthcare have also arisen, and the prevalence of 

misinformation is a risk. Social media analytics can offer a path toward patient education and 

empowerment and improved health literacy of the population by providing clinicians and patients 

with the ability to easily retrieve understandable and relevant video-based content.  

2.3 Augmented Intelligence and Human in the Loop Training Methods  

Evaluation of healthcare video content requires domain expertise. Given the amount of user-

generated video content available, it is not feasible to generate a large, labeled dataset for typical 

standalone machine learning methods. Due to the high level of uncertainty and criticality in 

healthcare and problem diversity, our objective is to introduce human-like cognitive capabilities 

into artificial intelligence (AI) systems to develop an augmented intelligence approach. While 

artificial intelligence, machine learning, and other automation technologies have made significant 

advances in recent years, many important problems are often solved through the collaboration of 

human beings and machines together (Jain et al. 2018). Applications of augmented intelligence 
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and human-in-the-loop methods have started to emerge in a number of domains, such as 

cybersecurity, counterterrorism, healthcare, fintech, and among others. Augmented intelligence 

can be divided into two approaches: one is human-in-the-loop augmented intelligence with human-

computer collaboration, and the other is cognitive computing based augmented intelligence, in 

which a cognitive model is embedded in the machine learning system (Zheng et al. 2017). Human-

in-the-loop augmented intelligence is defined as an intelligent model that requires human 

interaction (Williams et al. 2018). In this type of intelligence system, the human is always part of 

the system and consequently influences the outcome in such a way that the human gives further 

judgment if a low-confidence result is given by an algorithm. This approach readily allows us to 

address problems and requirements that may not be easily trained or classified by machine learning 

(Zheng et al. 2017). Cognitive computing-based augmented intelligence refers to new software 

and/or hardware that mimics the function of the human brain and improve a computer’s capability 

of perception, reasoning, and decision-making (Kelly 2015). The goal is to create more accurate 

models that simulate how the human brain/mind senses, reasons, and responds to stimuli. 

Co-training is a multi-view learning paradigm that exploits unlabeled data in addition to 

labeled data to improve learning performance (Blum and Mitchell 1998). In machine learning, 

unlabeled data is often substantially cheaper and more plentiful than labeled data. YouTube 

contains thousands of healthcare related videos. However, annotating these videos requires 

significant human effort. Therefore, it is not feasible to obtain a large amount of annotated video 

data, given the domain expertise required. Co-training trains two learners, respectively, from two 

different views and lets the learners label the most confident unlabeled instances to enlarge the 

training set of the other learner (Platanios et al. 2017). When the two learners are inconsistent, a 

human expert will evaluate the performance and decide on the label. Such a process is repeated 
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until a stopping condition is met. Intuitively, each example contains two “views,” and each view 

contains sufficient information to determine the label of the example. This redundancy implies an 

underlying structure of the unlabeled data (since they need to be “consistent”), and this structure 

makes the unlabeled data informative. This approach has been used for a variety of learning 

problems, including recommender systems (Zhang et al. 2014), text classification (Ma et al. 2017), 

natural language processing (Pierce and Cardie 2001), and image recognition (Ma et al. 2017). The 

co-training process is viewed as a combinative label propagation over two views. Obtaining labels 

can be expensive or time-consuming because of the involvement of human experts in this research 

context. Most learning tasks can be made more efficient in terms of labeling cost by intelligently 

integrating specific unlabeled instances to be labeled by experts.  

2.4 Research Question 

Despite the growing attention of policymakers and healthcare providers, it is evident that health 

educational materials remain too complicated for patients to comprehend. Evaluations of health 

information online are an urgent issue and are amplified when considering that 80% of Americans 

search for health information online, and only 12% have proficient health literacy to correctly 

interpret and use it. In this study, we seek to address the following research question: how can we 

design a scalable approach to combine human cognitive power and machine learning methods and 

evaluate understandability, a patient education construct from literature, in user-generated videos?  

 In this study, we propose the development, implementation, and preliminary evaluation of 

efficient automated methods for the identification of appropriate user-generated content (UGC) in 

the form of YouTube videos for public education and health promotion. A novel feature of our 

work is in using a human-in-the-loop augmented intelligence tool to develop an AI for social good 

application: assessing the understandability of medical information in user-generated content. 
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3. Data and Research Methods 

3.1 Video Collection  

More than 100 million U. S. adults are now living with diabetes or prediabetes, according to the 

Centers for Disease Control and Prevention (CDC 20203). As of 2018 it was reported that 34.2 

million Americans – 10.5 percent of the U.S. population – have diabetes. Another 88 million have 

prediabetes, a condition that, if not treated, often leads to type 2 diabetes within 5 years. Type 2 

diabetes is increasing in the population and is proving difficult to control with conventional 

therapy. Diabetes is a contributing factor to many other serious health conditions, such as heart 

disease, stroke, nerve and kidney diseases, and vision loss. To reduce the impact of prediabetes 

and type 2 diabetes, healthcare institutions and medical professionals are applying a multi-pronged 

approach to increase awareness of diabetes and promote patient education on self-management 

and lifestyle behavior change programs to improve healthy eating habits and increase physical 

activity (Shrivastava et al. 2013).  

Understandable, multimedia, and content-rich videos can complement and support 

clinician and public health efforts. We develop a scalable, generalizable, augmented-intelligence-

based, co-training approach to assess the understandability of YouTube videos. Figure 1 illustrates 

our approach, which consists of five components: video collection; video analysis; text analysis; 

co-training approach for video understandability assessment; and understandability evaluation.  

 
3 https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf 

https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf
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Figure 1. The Research Framework to Assess Healthcare Video Understandability 

 

Combining physician input with a literature review helped us identify 235 search keywords 

related to diabetes patient education. These keywords cover various aspects of diabetes patient 

education, including general information about the disease, treatments, lab tests, prevention, self-

management procedures, and lifestyle management.  These keywords are available in Table A1 in 

the Online Appendix. We collected the top 50 videos for each search term with YouTube Data 

API and stored the videos, their rankings, and metadata in a database for further analysis. The 

attributes we collected from each video are available in Figure A1 in the online Appendix. 

Attributes related to video snippets and content details are generated at the time of video upload, 

while video usage is generated by user engagement over time and the statistics are from the day of 

video data collection.  In total, we collected 9,873 unique videos using over 200 search terms, 

which serve as the data for the current study on video understandability.  

3.2 Video Annotation  

YouTube offers a diverse range of content and perspectives from professionals in healthcare 

organizations to patients, caregivers, and the general public. Our dataset includes professionally 

produced videos by healthcare organizations and individuals on the basics of diabetes, its 
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complications, and treatments. It also contains research presentations from renowned researchers 

and medical experts on the latest research development and scientific findings about the disease as 

well as low-quality content or inaccurate videos produced by both individuals and organizations. 

This diversity introduces a challenge for annotating the videos. We rely on experts’ consensus 

perspective to evaluate understandability based on the Patient Educational Material Assessment 

Tool (PEMAT) for audio and video materials (Shoemaker et al. 2014), as it is the only systematic 

method developed to assess video content.  Table 2 lists our adaptation of PEMAT. PEMAT 

focuses on four aspects of video materials, specifically: content, word choice and style, 

organization, and layout and design, with multiple criteria within each aspect. The 

understandability score of a video is calculated based on the scores for each criterion with the 

following equation.  When a video is scored above 50%, it is considered to have high 

understandability.  

𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

=  
𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1′𝑠 𝑖𝑛 𝑃𝐸𝑀𝐴𝑇 𝑟𝑒𝑠𝑢𝑙𝑡

12 − 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝐴′𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑃𝐸𝑀𝐴𝑇 𝑟𝑒𝑠𝑢𝑙𝑡 
× 100% (1) 

Table 2. Patient Educational Material Assessment Tool for Audio and Video Materials 
Patient Educational Material Assessment Tool – Video Understandability  

Content  

1  The material makes its purpose completely evident.  0, 1  

Word Choice & Style  

2  The material uses common, everyday language.  0, 1 

3  Medical terms are used only to familiarize the audience with the terms. When used, 

medical terms are defined.  

0, 1  

4  The material uses the active voice.  0, 1 

Organization  

5 The material breaks or “chunks” information into short sections. 0, 1, N/A 

6 The material’s sections have informative headers.  0, 1, N/A 

7  The material presents information in a logical sequence.  0, 1 

8  The material provides a summary.  0, 1, N/A 

Layout & Design  

9  The text on the screen is easy to read.  0, 1, N/A 

10  The material allows the user to hear the words clearly (e.g., not too fast, not 

garbled).  

0, 1, N/A 
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11  The material uses illustrations and photographs that are clear and uncluttered.  0, 1, N/A 

12  The material uses simple tables with short and clear row and column headings.  0, 1, N/A 

*Scoring: 0 = disagree, 1 = Agree, N/A = Not applicable 

Given the volume and scope of healthcare videos on YouTube, manual evaluation, as well 

as annotation of a large number of videos by domain experts, can be time-consuming and costly, 

hence impractical. We develop an automated approach that employs a semi-supervised method 

called co-training which not only learns from the labeled observations but also leverages the 

unlabeled instances to improve model performance. 600 diabetes-related videos are randomly 

selected from our corpus of 9,873 unique videos as the initial labeled dataset for co-training. 

Another 100 videos are sampled for evaluation. Sample size calculation indicates that less than 

500 videos are needed to achieve high inter-rater reliability (κ > 0.80) with multiple raters (Donner 

and Rotondi 2010). The remaining videos are used as unlabeled data to evaluate the effectiveness 

of co-training for semi-supervision. When the machine learning models yield inconsistent results, 

the medical experts will review the videos and provide supervision according to PEMAT. Four 

physicians, trained to use these guidelines, labeled these videos for video understandability 

according to the PEMAT guideline in Table 2. They watch a video, assess the video according to 

the criteria within content, word choice and style, organization, layout, and design, and assign 

them 0, 1, or N/A (not applicable). Figure 2 demonstrates the expert evaluation measures and 

results4. The video in Figure 2 is considered to have high understandability.  

 
4 Four domain experts watch a video (https://www.youtube.com/watch?v=4JLnkpdjoU8) and assess the video 

according to its content, word choice and style, organization, layout and design. They assign scores from 0, 1, or 

N/A (not applicable) to items in Table 2. The video in Figure 2 is considered to have high understandability. 

https://www.youtube.com/watch?v=4JLnkpdjoU8
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Figure 2. An illustrative example of PEMAT annotation by domain experts 

The PEMAT is designed to be completed by healthcare professionals, including healthcare 

providers, health librarians, and other clinical practitioners. The selected raters fall into the targeted 

user group who are qualified to use the PEMAT tool to rate the videos. Before they started working 

on annotation, all of them carefully studied the PEMAT user guide5. To maximize the consistency 

among these raters, we had each rater independently rate the same ten videos. A study session was 

held with these four raters to discuss items with discrepancies. Each rater provided his/ her 

rationale for the rating provided. The group reviewed the PEMAT user guide to clarify how each 

item was intended to be rated and come to a consensus. Then they rated the rest of the videos based 

on the consensus. We use the intraclass correlation coefficient (Bartko JJ 1966) to assess the 

interrater reliability of the annotation at the video level. To ensure there is an agreement on every 

video, we have a fifth rater to review and consolidate the videos with discrepancies. Each video 

takes approximately 10 minutes to review. The inter-rater reliability of the video understandability 

score is 87%. Table 3 below summarizes video understandability scores (according to PEMAT 

guidelines). 

Table 3. Video Understandability Annotation (on a binary scale) 

 
5 https://www.ahrq.gov/sites/default/files/publications/files/pemat_guide.pdf 

https://www.ahrq.gov/sites/default/files/publications/files/pemat_guide.pdf
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Variables 

# of 0 

(no) 

# of 1 

(yes) 

# of 

N/A 

The material makes its purpose completely evident 175 525 0 

The material uses common, everyday language 183 517 0 

Medical terms are used only to familiarize the audience with the terms. When 

used, medical terms are defined 241 459 0 

The material uses the active voice 174 626 0 

The material breaks or “chunks” information into short sections  548 143 9 

The material’s sections have informative headers 601 90 9 

The material presents information in a logical sequence 164 536 0 

The material provides a summary 458 233 9 

Text on the screen is easy to read 137 294 269 

The material allows the user to hear the words clearly 97 539 64 

The material uses illustrations and photographs that are clear and uncluttered 111 338 251 

The material uses simple tables with short and clear row and column headings 192 57 451 

Understandability 315 385 0 

3.3 Video Analysis  

 

Video data analysis forms the building blocks for designing our machine-learning approach to 

evaluating patient educational videos. A large body of research has examined object detection 

within image frames. State-of-the-art performance for video mining tasks is often achieved by 

using one of many large open-source datasets or pre-trained models (Lee et al. 2019). In processing 

the video data, we extract the features according to PEMAT criteria in Table 2 with video analysis 

techniques from the Google Cloud platform. Table 4 below summarizes the features we extract 

from video data processing results.  

Table 4. Features from Google Cloud Video Intelligence API 
Tasks Features Description 

Detect shot changes  # of scenes in a video The total number of scenes throughout the video  

Optical character 

recognition 

Text on screen A string of text detected in the video 

Text confidence score The confidence score of a detected text  

Video transcription Transcribed text  The automated video transcription results 

Transcription confidence score  The confidence score of a transcribed text  

 

PEMAT guideline suggests that breaking the information into small chunks or sections is 

positively related to video understandability. We utilize scene detection methods to detect the 

number of scenes in a video as an indicator of whether the videos are organized in small sections. 

We build on prior work that has defined a scene as one of the subdivisions of a movie or a play, in 
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which the setting is fixed or when it presents continuous action in one place (Rasheed and Shah 

2003). A scene comprises a single, complete and unified event or segment of a movie. A scene 

normally occurs in one location and deals with one action; the end of a scene is often indicated by 

a change in time, action, and/or location. Scene detection is a widely adopted method in computer 

vision and video analytics for video classification, video understanding, and management (Xiong 

and Lee 1998). Video content analysis relies on scene detection to extract story units and segments. 

We utilize scene detection methods to detect the number of scenes in each video as an indicator of 

whether the videos are organized in small sections. Scene change detection estimates the sub-

sections in a video (Shahraray 1995). Scene change detection is important in a number of video 

applications, including video indexing, semantic feature extraction, and, in general, pre- and post-

processing operations (Hu et al. 2011). Video content analysis relies on scene detection to extract 

story units and segments.  

A video transcript is a text version of a video’s audio track. Video transcription techniques 

can extract video narratives, which convey a significant portion of the information in the videos 

(Liao et al. 2013). The quality of narratives also may affect viewers’ understanding of the videos. 

PEMAT evaluates if the material allows the user to hear the words clearly. We conduct video 

transcription to perform in-depth content analysis and assess the clarity of narratives. Optical 

character recognition is used to detect and extract text, tables, or illustrations in the videos. Layout 

and design are an important aspect of patient education video evaluation. Text on the screen should 

be easy to read. The illustrations and tables should have clear headings. Optical character 

recognition can extract features related to the clarity of text, tables, and illustrations and enable the 

evaluation of video layout and design.  
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PEMAT expects a video or multimedia material with narration to allow the viewer to hear 

the words clearly. The narrator or voiceover should not be speaking too fast, nor should the speech 

be garbled or hard to understand. The video transcription algorithm returns not only the transcript 

but also the confidence score of the predicted transcript. The confidence score reflects whether the 

speech is clear.  We also assessed whether the text on the screen is easy to read with optical 

character recognition (OCR). Audiovisual materials that are overcrowded with words or have text 

that flashes briefly on the screen are difficult to read and understand. This item is not applicable 

(N/A) if no text appears in the material or a narrator reads all of the text out loud because the 

material is not relying on the viewer to read the text. We use OCR to detect text in the videos and 

the confidence score of OCR as a proxy for whether the text is easy to recognize.  

3.4 Text Analysis for Videos  

Readability  

We assess whether the material uses common everyday language with readability analysis. 

PEMAT requires that the material should use common, everyday language that would be easy to 

understand for most consumers or patients nearly all the time. To assess this criterion, we use the 

Flesch-Kincaid readability test to indicate how the description and the transcription of a video are 

to understand. The Flesch-Kincaid readability test was developed under the contract to the U.S. 

Navy research in 1975 (Kincaid et al. 1975). It has been widely adopted, especially in the public 

health domain, to assess how easy a material is to read (Basch et al. 2017, 2020). 

Syntactic analysis  

PEMAT assesses whether the material uses active voice. It is often argued that the passive voice 

will result in a structure that is more verbose than the active voice and, therefore, harder to 

understand and that the meaning of the passive voice is indirect and/or less forceful than an active 
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voice (Millar et al. 2013). Therefore, the use of active voice is highly advocated in patient 

educational materials, medical writings, and other areas. According to PEMAT, if the material 

overall uses active voice, this criterion is met. To automatically assess this criterion, we use part-

of-speech tagging, a common linguistic technique, to detect the category of verbs in the video 

description and narratives and compute the number of verbs in active voices. The number of verbs 

in active voice is extracted with Part-of-speech tagging. The verbs in active voices belong to the 

tag set: VB, VBD, VBG, VBP and VBZ. 

Medical entity recognition  

We adopted a Bidirectional Long-Short Term Memory model from prior work to extract six types 

of medical terms from the text data (Liu et al. 2020). Table 5 lists the medical term categories and 

provides explanations. These six categories cover the majority of medical terminologies used in 

patient educational materials and communications (Fage-Butler and Nisbeth Jensen 2016).  

Table 5. Medical Terminologies Used in Patient Educational Materials and Communications 
Medical Term 

Category 

UMLS Semantic Type Examples 

Body part 
bdsy (Body System), blor (Body Location or Region), bpoc (Body Part, 

Organ, or Organ Component) 

Liver, foot, 

pancreas 

Chemicals or 

Drugs 

chem (Chemical), chvf (Chemical Viewed Functionally), chvs 

(Chemical Viewed Structurally), clnd (Clinical Drug), elii (Element, 

Ion, or Isotope), enzy (Enzyme), hops (Hazardous or Poisonous 

Substance), inch (Inorganic Chemical), orch (Organic Chemical), phsu 

(Pharmacologic Substance) 

Insulin, 

Metformin, 

Lantus 

Medical 

devices 

drdd (Drug Delivery Device), medd (Medical Device) Insulin pen, 

glucometer 

Medical events 

acab (Acquired Abnormality), dsyn (Disease or Syndrome), inpo 

(Injury or Poisoning), mobd (Mental or Behavioral Dysfunction), patf 

(Pathologic Function), sosy (Sign or Symptom) 

Nausea, ketosis, 

diabetes 

Medical 

professionals 

humn (Human), famg (Family Group) physician, 

diabetes 

educators, 

nurses 

Medical 

procedures  

lbpr(Laboratory Procedure), lbtr(Laboratory or Test Result), 

topp(Therapeutic or Preventive Procedure) 

HbA1C, 

Creatinine. 

Five thousand sentences were randomly selected from the video description and transcription test 

bed with 4,000 in the training set and 1,000 in the test set. Two expert annotators independently 
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labeled the sentences for semantic types. We used Cohen’s kappa to measure inter-annotator 

reliability. The kappa value is 0.90 for the medical terminology annotation. A third annotator 

reviewed the disagreements and made the final judgments. Finally, the ground truth was generated, 

containing 4,000 training sentences and 1,000 test sentences. The statistics of the training and test 

sets are shown in Table 6 below. 

Table 6. Statistics of the Training and Test Sets 
  Training Set Test Set 

# of sentences 4,000 1,000 

# of mentions of body part  227 101 

# of mentions of chemicals and drugs  2,181 538 

# of mentions of medical devices 545 126 

# of mentions of medical events 784 245 

# of mentions of medical professional 67 18 

# of mentions of medical procedures  197 53 

We train an embedding model using the Skip-gram method in Word2vec and devise a Bidirectional 

Long Short-term Memory model to extract medical terms from video descriptions and 

transcriptions at the sentence level. Overall, the model achieves a precision of 87.4%, a recall of 

87.8%, and an f-measure of 87.3%. We have also provided several experiments to evaluate the 

classification of our method in comparison to dictionary-based approaches and state-of-the-art 

methods such as conditional random fields (CRF). Performance is reported in Table A2 in the 

Online Appendix. We then extract medical terms from video descriptions and transcriptions using 

the model.  

Semantic analysis  

PEMAT expects materials to have a summary of the key points or a review of the key points of 

the material, either in writing or orally. The summary usually comes at the end of the material and 

starts with summary words.  Therefore, we curated a comprehensive list of summary words and 

phrases from multiple sources and used them to detect whether a material provides a summary.  
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PEMAT suggests that information in the material should be presented in an order that 

makes sense to the user. Main messages or the most important ideas should be at the beginning of 

sections or in lists because users tend to pay more attention to them. To measure whether the 

material presents information in a logical sequence, we evaluate the use of transitional words and 

phrases in the material. A transition is a change from one idea to another in writing or speaking 

and can be achieved using transition terms or phrases, which are most often placed at the beginning 

of sentences, independent clauses, and paragraphs and thus establish a specific relationship 

between ideas or groups of ideas. Transitions are used to create “flow” in writing or speaking and 

make its logical development clearer to the audience. The use of transition words and phrases can 

improve the logical connections in writing and speech (Oliu et al. 2013). Transition words and 

phrases can be grouped into categories such as causation, chronology, combinations, contrast, 

example, clarification, summary, and more. We collect common transitional terms and phrases 

under these categories as a proxy to measure whether the material presents information in a logical 

sequence. Table 7 lists all the words and phrases we use to identify transitions and summaries. 

Table 7. Words and Phrases for Summary and Transition 

Category Expressions 

Summary/Conclusion6 Finally, in a word, in brief, briefly, in conclusion, in the end, in the final 

analysis, on the whole, thus, to conclude, to summarize, in sum, to sum 

up, in summary, lastly 

Transition7 Accordingly, as a result, and so, because, consequently, for that reason, 

hence, on account of, since, therefore, thus, after, afterwards, always, 

at length, during, earlier, following, immediately, in the meantime, 

later, never, next, once, simultaneously, so far, sometimes, soon, 

subsequently, then, this time, until now, when, whenever, while, 

additionally, again, also, and, or, not, besides, even more, finally, first, 

firstly, further, furthermore, in addition, in the first place, in the second 

place, last, lastly, moreover, next, second, secondly, after all, although, 

and yet, at the same time, but, despite, however, in contrast, 

 
6 https://writingcenter.unc.edu/tips-and-tools/transitions/ 
7 https://writing.wisc.edu/handbook/style/transitions/ 
 

https://writingcenter.unc.edu/tips-and-tools/transitions/
https://writing.wisc.edu/handbook/style/transitions/


 24 

nevertheless, notwithstanding, on the contrary, on the other hand, 

otherwise, thought, yet, as an illustration, e.g., for example, for 

instance, specifically, to demonstrate, to illustrate, briefly, critically, 

foundationally, more importantly, of less importance, primarily, above, 

centrally, opposite to, adjacent to, below, peripherally, below, nearby, 

beyond, in similar fashion, in the same way, likewise, in like manner, 

i.e., in other word, that is, to clarify, to explain, in fact, of course, 

undoubtedly, without doubt, surely, indeed, for this purpose, so that, to 

this end, in order that, to that end.  

We evaluate whether the material makes its purpose evident. According to the PEMAT User’s 

Guide, this criterion refers to whether the material uses a title or upfront text that tells the reader 

what the material is about. In the implementation, we implement this criterion by checking whether 

this video has a title, tags, and description. YouTube suggests that tags are descriptive keywords 

content creators can add to the video to help viewers find the content. Your video’s title, tags, and 

description are important pieces of metadata for the video’s discovery. These main pieces of 

information should provide important information about the purpose of the video so that viewers 

can find the video and decide whether to watch it.  

3.5 Co-training Approach for Video Understandability Assessment  

In this study, we define video understandability classification in the context of patient education 

as a multi-view learning and binary classification problem. Due to the vast amount of user-

generated videos available and the cost to annotate the videos manually, it is essential to deploy 

an augmented intelligence approach in this context. The co-training approach enables us to 

accomplish this task with limited human effort and incorporate domain experts’ assessment when 

machine learning models are insufficient. Our dataset includes video metadata and video data. We 

develop classifiers from two sufficient and conditionally independent views (i.e., video metadata 

and video content) to assess the video understandability. By choosing a feature-based design, we 

managed to engineer the features based on the evaluation criteria in the PEMAT guideline.  The 



 25 

classification model offers high interpretability, which can benefit healthcare organizations and 

reputable health content creators in their future content creation process.   

3.5.1 Co-training based understandability classification  

Figure 3 illustrates the procedures of the co-training approach for video understandability 

classification. This consists of the following: a set of L labeled videos and a set of U unlabeled 

videos, classifier F1 trained with features from video metadata view, classifier F2 trained with 

features from video content view, and a hyper parameter confidence threshold. The video metadata 

contains the video title, video description, video tags, and video usage information. It represents 

how the content creators would like the viewers to perceive the video. The video content view 

captures the information delivered by the video. Combining video content and video metadata 

gives us a comprehensive view of the videos on YouTube. An initial labeled dataset L, and an 

unlabeled dataset U are given. The co-training process in this study is presented in Table 8. 

 

Figure 3. A human-in-the-loop co-training approach to assessing video understandability 

 

Table 8. Pseudocode for co-training algorithm 

Input:  

A set L of labeled video examples 

A set U of unlabeled video examples 

Output:  

             A set L’ of labeled video examples 

Procedures: 

Loop for K iterations 
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1. Train a classifier F1 on L that considers only video metadata features; train a classifier 

F2 on L that considers only features from video content features 

2. User the trained classifiers to make predictions on videos in U 

3. Extract p1 positive and n1 negative examples from U on which F1 has the most confident 

predictions, specified by a confidence threshold 

4. Extract p2 positive and n2 negative examples from U on which F2 has the most confident 

predictions, specified by a confidence threshold 

5. Compare p1 with p2, and n1 with n2 

6. If a video appears in both p1 and p2 or both in n1 and n2, move the video and its label 

from U to L 

7. If a video appears in both p1 and n2 or both p2 and n1, expert reviewers annotate 

inconsistent labels and add the final label of this video to L 

8. Halt when U is empty or no new videos are added to the labeled set 

3.5.2 Features from Video Metadata View  

In the video metadata view classifier, we leverage the features generated from video metadata to 

classify video understandability. Each video’s metadata contains the video title, description, and 

tags, which are submitted by the content creator. These elements suggest the purpose of a given 

video. Therefore, we can use them to represent whether this video makes its purpose evident. A 

video with good understandability to patients uses common daily language. Text preprocessing 

techniques are used to identify the total number of words, sentences, and unique words from the 

video description. A Bidirectional Long-Short Term Memory named entity recognition model is 

used to extract the number of medical terms (Liu et al. 2020). Table 9 summarizes the features we 

propose to extract from the video metadata view, the method to derive the measure, and the 

PEMAT criteria they fall under.   

Table 9. Features for Video Understandability Classification from Video Metadata View 
Feature name Feature description Method PEMAT Criterion  

Has title Whether the video has a title Metadata collection The material makes its 

purpose evident Has description Whether the video has a text 

description  

Metadata collection 

Has tags Whether the video has tags  Metadata collection 

Description 

Readability 

The automated readability index 

of the video description 

Readability analysis The material uses 

common everyday 

language 

Active word count The number of verbs in the 

active voice in the video 

description 

Syntactic analysis  The material uses 

active voice 
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Summary word 

count 

The number of summary words 

in the video description 

Semantic analysis The material provides 

a summary 

Transition word 

count 

The number of transition words 

in the video description 

Semantic analysis The material presents 

information in a 

logical sequence.  

Video duration The total length of the video in 

seconds 

Metadata collection  Medical information 

encoded in the video 

Description word 

count 

The total number of words in 

the video description 

Metadata collection 

Sentence count The total number of sentences in 

the video description 

Metadata collection  

Description 

unique words 

The total number of unique 

words in the video description 

Metadata collection 

Description 

medical term 

count 

The total number of medical 

terms in the video description 

Medical entity 

recognition 

 

3.5.3 Features from Video Content View  

In the video content view, we derive features from the video narratives, video shots, and associated 

confidence scores. We generate a narrative readability score to examine whether the material uses 

common everyday language. Part-of-speech tagging is used to extract verbs in the active voice in 

the transcript. The numbers of transition words and summary words are identified according to the 

transition word list. We use the video transcription confidence score as a proxy for whether the 

users can hear the words in narratives clearly. Videos are often broken into different chunks by 

scenes. We use Google Video Intelligence to detect the number of scenes in the video as an 

indicator if the video has short sections and employ text processing methods to generate features 

from the transcript. Table 10 summarizes the features we extract from the video content view, the 

methods to derive the measure, and the PEMAT criteria they fall under.   

Table 10. Features for Video Understandability Classification from Video Content View 
Feature Name Feature Description Method PEMAT Criterion 

Narrative readability The automated readability 

index for narrative 

Readability 

analysis 

The material uses common 

everyday language 

Active word count The number of verbs in the 

active voice in the video 

transcript 

Syntactic analysis The material uses active 

voice 

Summary word 

count 

The number of summary words 

in the video transcript 

Semantic analysis The material provides a 

summary 
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Transition word 

count 

The number of transition words 

in the video transcript 

Semantic analysis The material presents 

information in a logical 

sequence.  

Video transcription 

confidence 

The video transcription 

confidence score 

Auto transcription The material allows users to 

hear the words clearly 

Text detection 

confidence 

Text recognition confidence 

score 

Optical character 

recognition  

The text on the screen is 

easy to read 

Scene count The total number of scenes in 

the video 

Scene detection The material breaks or 

“chunks” information into 

short sections. 

Transcript word 

count 

The total number of words in 

the video transcript 

Auto transcription Medical information 

encoded in the video  

Transcript unique 

word 

The total number of unique 

words in the transcript 

Auto transcription 

Transcript sentence 

count 

The number of unique words in 

a video  

Auto transcription 

Transcript medical 

term 

The total number of medical 

terms in the video 

Medical entity 

recognition 

Video object The total number of unique 

objects in the video.  

Object detection 

 

4. Evaluating Video Understandability Classification Performance  

4.1 Video Understandability Classification  

we collected 9,873 videos using the search keywords identified by a medical expert. Among these 

videos, 8,963 videos have descriptions, 8,719 have narratives, and 4,327 of them have text 

embedded in the videos. We applied text and video analytics techniques to extract metadata view 

features and video content view features. Tables A3 and A4 in the Online Appendix reported the 

descriptive statistics of features of all the videos in our data collection and correlations of these 

features. Our co-training model initially starts with 600 labeled videos for training. The model 

converged after 12 iterations with a confidence threshold of 0.65. In the co-training process, 305 

videos require human annotation. All these hyperparameters are selected based on empirical 

experiments. The model assigns labels to all the unlabeled data after convergence. Table 11 shows 

the coefficients of the logistic regression classifiers for each view. The active word count and 

summary count have a significant and positive impact on understandability. The transition word 

count in narratives is significant, but that of description is not. Transcription confidence and text 
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detection confidence have a positive impact on video understandability. Video duration, medical 

terms count in descriptions, and transcriptions negatively affected the video understandability. The 

readability scores of the description and narratives have a significant and positive impact on video 

understandability. 

Table 11. Logistic Regression Model Summary 
F1: Video Metadata View 

Variable Name Estimate  P-value  

Has title -0.335 0.347 

Has description -0.217 0.153 

Has tags -0.184 0.176 

Description readability 0.367 0.073 

Active word count 0.029 0.088 

Summary word count 0.152 0.049 

Transition word count 0.096 0.104 

Video duration -0.071 0.086 

Description word count 0.038 0.144 

Sentence count 0.157 0.121 

Description unique words 0.085 0.144 

Description medical term  -0.020 0.067 

Constant  -0.319 0.11 
  

F2: Video Content View 

Variable Name Estimate  P-value  

Narrative readability 0.132 0.034 

Active word count 0.017 0.026 

Summary word count 0.117 0.045 

Transition word count 0.045 0.087 

Transcription confidence 0.028 0.043 

Text detection confidence 0.021 0.039 

Shot count -0.254 0.203 

Transcript word count -0.036 0.141 

Transcript unique word -0.085 0.072 

Transcript sentence count -0.074 0.143 

Transcript medical term -0.009 0.045 

Video object -0.104 0.055 

Constant  -0.272 0.117 

 

The variables that are most significant are consistent with PEMAT. Low understandability 

videos are associated with longer duration, lengthier narratives, and greater medical terminologies. 

For model performance, we compare our predicted results in the 100 videos included in the 

evaluation set. Although cross-validation is commonly used in evaluating machine learning 

models, it is not feasible to collect a large repository of labeled data to evaluate co-training models. 

We therefore adopt a hold-out evaluation that is usually used for co-training methods (Ning et al. 

2020).  We compare our model with three benchmark models: logistic regression, Support Vector 

Machines, and Random Forest. To ensure a fair comparison, we have carefully tuned the model 

hyperparameters to get the best performance of the benchmark models and proposed method. For 

logistic regression, we have experimented with difference solvers and regularization methods. Our 

best performance model utilizes liblinear solver and L2 regularization. The best performance of 

SVM is achieved by RBF kernel and penalty score of 0.1. The best performance of the Random 
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forest model is achieved by max_features = log2, and N_estimator = 100. Table 12 summarizes 

the classification performance of our proposed method and benchmarks. Our approach achieved a 

weighted precision of 0.84, a weighted recall of 0.79, and an F1 score of 0.81 in classifying videos.  

Figure 4 illustrates the Receiver Operating Characteristic Curves. The results show that the co-

training method significantly improved the video understandability classification performance.   

Table 12. Video Understandability Classification Results  
Precision Recall  F1 score  

Co-training with logistic regression 0.84 0.79 0.81 

Logistic regression  0.63 0.60 0.61 

Support Vector Machines 0.77 0.75 0.76 

Random forest  0.80 0.74 0.77 

 

 
Figure 4. ROC curves of the co-training model and benchmark models 

 

4.2 Impact of the Co-training Process on Classification Performance  

The co-training process combines expert effort and machine learning methods to classify the video 

understandability according to the guidelines in the patient educational domain. One critical issue 

in the human-algorithm connection is to understand how this collaboration between human experts 

and machine learning algorithms improves the performance. Figure 5 below shows the 

classification error rate on the test set over iterations of training. In each iteration, new instances 

are added to the training process, lowering the classification error of the metadata view classifier, 
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video content view classifier, and co-training classifier. The reduction in classification error shows 

that this iterative process improves the overall performance. Furthermore, by combining human 

intelligence and machine intelligence from classifiers of two different views, the co-training 

approach achieves the best performance.  

 
Figure 5. Co-training Performance by Iterations 

 

4.3 Impact of Expert Involvement on Classification Performance  

 

The human algorithm interaction in the co-training process happens in two stages: 1. Medical 

professionals provide a set of labeled examples to initialize the model training. 2. medical 

professionals are also involved in the co-training process when there are inconsistent high-

confidence labels predicted by two different classifiers. Obtaining inputs from domain experts 

through a human-in-the-loop algorithm design is essential to our chosen task of assessing the 

understandability of videos from a patient education perspective. Our design also seeks to 

minimize human involvement while not compromising performance. To this end, we evaluate the 

impact of human involvement at different stages of model learning.  

Figure 6 below shows the classification error by the number of labeled training examples. 

Devising a model to classify the understandability of patient educational videos requires high-

quality training data. The process of creating training data involves medical professionals 
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reviewing and categorizing videos based on guidelines. As machine learning algorithms are 

dependent on the quality and quantity of their training data, we observe that increasing the number 

of labeled examples leads to an improvement in performance. However, as for co-training, the 

benefit of adding more training examples diminishes when we accumulate a significant amount of 

labeled training examples (i.e., 500) for video understandability classification.  

 
Figure 6. Co-training Performance and Number of Labeled Training Examples 

 

Figure 7 below shows the impact of the confidence threshold on the number of expert 

interventions needed during the co-training process. The confidence threshold determines how 

many predicted labels we include in the label comparison. Its purpose is to prevent the unlabeled 

samples from being labeled with the wrong labels, thus decreasing the ability of the learner. Based 

on the label confidence threshold, unlabeled data in each iteration will be divided into three 

categories: videos with low confidence labels, videos with consistent and high confidence labels, 

and those with inconsistent but high confidence labels. The lower the threshold is, the more videos 

are compared and evaluated in each iteration.  
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Figure 7. Co-training Confidence Threshold and Number of Expert Interventions 

 

Figure 8 below shows the relationship between classification error rate and confidence 

threshold. A lower threshold can possibly lead to a faster convergence but, at the same time, result 

in more human involvement during the co-training process, while a higher confidence threshold 

may lead to the early stopping of the training because no new labels meet the confidence threshold. 

When the confidence threshold is high, the training process stops before assigning labels to all the 

unlabeled data. We follow the majority rule to assign the predicted labels for these unlabeled 

samples. We observe a negative impact on the classification performance due to early stopping 

from a high confidence threshold. When the confidence threshold is too low, too many unlabeled 

examples are misclassified and affect the ability of the co-training model. As a result, we see a 

performance decrease when the confidence threshold is too low.  

  
Figure 8. Co-training Confidence Threshold and Classification Error Rate  
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4.4 Evaluating the Importance of Understandability to Video Recommendations by Experts 

 

We design a small user study to evaluate how significant video understandability is to experts’ 

decision to recommend a YouTube video for patient education.  We re-rank the search results from 

20 randomly selected queries according to video understandability. Four medical experts reviewed 

the top 10 videos according to our re-ranked results for each query and reported whether they 

would recommend the videos to patients. Precision at K is a common information retrieval measure 

used in modern (web-scale) information retrieval systems (Manning et al. 2012). In web-scale 

retrieval, queries have thousands of relevant documents, and few users will be interested in reading 

all of them. Precision at K (P@K) assesses how many of the top K results are relevant (e.g., P@10 

or "Precision at 10" corresponds to the number of relevant results among the top 10 documents). 

We measure the average precision at K with K from 1 to 10 for 20 queries.  

 
Figure 9. Comparison of Video Understandability and Default YouTube Ranking with Expert 

Recommendation 

 

Figure 9 shows a chart comparing the significance of video understandability ranking. 30% 

of the top-ranked videos (videos ranked 1 or Top 1) in understandability are recommended by an 

expert. None of the videos that were top ranked by YouTube’s default ranking received this 

recommendation. 72% of the top 10 videos are recommended by experts ranking by 

understandability, while only 40% of the top 10 videos' YouTube ranking are recommended. We 

conclude that our understandability measure effectively identifies patient education videos.  

4.5 Evaluating the Impact of Understandability on Engagement  
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Building on prior studies that examine collective engagement on YouTube, we identify three 

measures of user engagement: video view count, comment count, and like count, which can be 

acquired from publicly available YouTube metadata. We examine how understandability is 

associated with user engagement with coarsened exact matching. There are concerns about the 

endogeneity between user engagement and video understandability. First, a video’s ability to 

engage with viewers, as well as the understandability of videos, could be influenced by external 

factors, such as the credibility of the channel posting the video. Second, there could also be 

systematic differences in how users engage with understandable or not understandable videos 

depending on unobserved taste preferences and channel heterogeneity in attracting viewers. Third, 

a channel may have a higher incentive to create video materials that provide understandable 

content when they observe greater engagement with the video. The fundamental challenge in 

identification is that we do not observe the counterfactual, i.e., it is not possible to randomize 

treatment across a channel by showing viewer videos with high or low understandability and 

measuring the impact on the engagement of a video. We model a video’s likelihood to have high 

understandability using logistic regression with several observable channels, and video-specific 

factors to encounter endogeneity and heterogeneity. Since user engagement may be influenced by 

a whole host of factors external to the content of a video, we control for heuristic measures of 

video quality, such as the duration of the video (Sood et al. 2011; Steinberg et al. 2010; Pandey et 

al. 2010), a good description or a comprehensive narrative (Gooding et al. 2011), technical quality 

(light, sound, resolution; Lim Fat et al. 2011; Steinberg et al. 2010; Gooding et al. 2011), 

credentials (Gooding et al. 2011), and the number of days since being published. Table 13 below 

shows the results of the logistic regression. 

Table 13. Results of the logistic regression  

Coefficients:  Estimate P-value 
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Intercept -9.7470 < 2e-16 *** 

Log(ChannelViewCount+1) 0.5162 < 2e-16 *** 

Log(ChannelSubscriberCount+1) 0.2295 2.04e-13 *** 

Log(ChannelVideoCount) -0.7669 < 2e-16 *** 

ContentDefinitionSD -0.4352 2.59e-06 *** 

Duration 0.0002 2.23e-11 *** 

Description Word Count -0.0015 0.00875 ** 

Description Unique Word 0.0069 3.93e-07 *** 

Log(publishedDays+1) 0.2874 0.00213 ** 

 

We used a coarsened exact matching method to conduct matching between the treatment 

group of videos that have high understandability and the control group of videos with low 

understandability. After matching, there are 365 videos in the treated group and 597 videos in the 

control group. The summary of the balance on the entire dataset and the matched dataset is 

available in the table below. The differences in the variables between the two groups are 

significantly reduced after matching.  

Table 14. Balance on the Entire Dataset and Matched Dataset 
Summary of Balance  All Data Matched Data 

Variables  Mean 

Treated 

Mean 

Control 

Std. Mean 

Diff.  

Mean 

Treated 

Mean 

Control 

Std. Mean 

Diff.  

log(channelViewCount + 1) 16.0245 12.1291 1.5060 14.9886 14.9739 0.0057 

log(channelSubscriberCount + 1)  10.6054 6.3278 1.3476 9.3214 9.2441 0.0243 

log(channelVideoCount + 1) 5.3956 5.1962 0.1114 5.3068 5.3070 -0.0001 

contentDefinitionhd  0.7960 0.5683 0.5650 0.6986 0.6986 0 

contentDefinitionsd 0.2040 0.4317 -0.5650 0.3014 0.3014 0 

Duration  676.7022 413.2235 0.3008 503.0027 395.4571 0.1228 

word_count_description 242.9178 146.3287 0.3735 126.7836 129.3711 -0.01 

unique_word_description 127.6597 76.5907 0.4522 72.8219 73.8849 -0.0094 

log(publishedDays + 1)  7.4026 7.3888 0.0295 7.5097 7.5065 0.0069 

The matching provides us a way to identify the impact of understandability on video view 

count, like count, and comment count. The estimated treatment effect on three measures of 

collective engagement is shown in Table 15 below. The results suggest that video 

understandability has a significant and positive impact on all three dimensions of collective 
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engagement. Increasing the understandability of the videos can bring more viewership, more 

comments, and more likes. Our results highlight the importance of understandability for healthcare 

organizations and health practitioners on social media platforms.  

Table 15. Estimated Treatment Effect 
Measure   Estimate P-value  

Log(View Count) Intercept 8.8946 <2e-16 *** 

ATE 2.5523 <2e-16 *** 

Log(Like Count) Intercept 3.2320 <2e-16 *** 

ATE 2.9494 <2e-16 *** 

Log(Comment Count) Intercept 1.6211 <2e-16 *** 

ATE 3.0981 <2e-16 *** 

 

5. Discussions and Conclusions  

5.1 Implications for Research  

With complex and very large-scale data generated by digital platforms, billions of people 

worldwide are accessing healthcare information through social media platforms. There is an urgent 

need for an evidence-based approach with AI-based methods for health literacy promotion. Our 

research is the first to attempt a guideline-driven consolidation of distinct data sources spanning 

metadata in text form and video data and adopt a human-in-the-loop learning strategy to address a 

video understandability assessment problem in the healthcare domain. Expert evaluation is needed 

when tasks are ambiguous for machine learning models to classify with high confidence.  

Our method is an alternative to recommendation systems based on content or collaborative 

filtering-based approaches. As we demonstrate, identifying and recommending relevant materials 

leveraging the vast corpora of publicly available user-generated content is a feasible way to deliver 

personalized and contextualized information, be it for healthcare, for do-it-yourself (DIY) projects 

or even to leverage (UGC) for education. The adaptability of the content found on social media 

has enabled a variety of applications that were hitherto unthinkable. Well-designed UGC videos, 
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in tandem with evidence from rigorous field experiments, could serve as part of a holistic system 

of care encompassing disease prevention and lifestyle changes along with resources for emotional 

support, better patient-physician interactions, and providing current and scientifically valid 

medical information to patients. Methods such as the ones we developed help us harness the power 

of free Internet goods that provide broad public benefits (Brynjolfsson et al. 2019) by involving 

multiple stakeholders in information dissemination.  

Our research methods can be applied in financial markets, where users obtain information 

about investing through social media, in marketing, where brand identities depend on two-way 

interactions between brands and consumers, and in politics and communication studies, where 

individuals study political persuasion and dynamics of attitude formation. Our approach is 

developed within the context of patient educational video design but could be generalized to other 

settings involving content moderation. Our method can be scaled to other settings, such as 

journalism, where there are significant concerns about fake news. Other applications include 

product classification in e-commerce, where e-commerce websites typically employ editors and 

crowdsourcing platforms such as Amazon Mechanical Turk (AMT) to classify products. 

Integrating text and images from customer reviews into automated machine learning-based 

classification approaches using co-training algorithms might improve classification accuracy and 

enable customers to obtain the benefits of content and context-based recommendation. Finally, as 

machine translation methods are gaining popularity in product categorization, our method provides 

a scalable framework that incorporates the benefits of machine learning while also allowing for 

input from domain experts. The methods developed here can be incorporated by video search 

engines like YouTube, Dailymotion, and other popular video archives to improve the quality of 

their search ranking by accounting for content, structure, vocabulary, and other constructs.  
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5.2 Implications for Practice 

Improving the public’s access to health information and their capacity to use it effectively can 

elevate the population’s health literacy, empower patients, and build societal resilience. Advocates 

of social media in medicine highlight social media’s potential to enable patient education and 

empowerment (Househ et al. 2014), offering the possibility of improving health outcomes 

(Moorhead et al. 2013). Healthcare organizations lack resources to create video content on a wide 

range of symptoms and disease progressions, offer easily understandable advice that can be 

integrated into patients’ daily routines, or provide such advice on topics that are outside the 

physician-patient interaction in a clinical setting. We are working with clinicians to develop a 

library of user-centric videos tailored for stages of chronic diseases and treatments, allowing 

clinicians to recommend/prescribe them to patients to watch at home or during clinic visits. Figure 

13 provides a summary of the technical components using the human-in-the-loop algorithmic 

assessment. It will allow clinicians to enter search keywords that are appropriate for the current 

context and retrieve a small number of videos that match the specifications. These can be viewed 

and shared with the patient in real-time, as needed, and prescribed as an intervention to facilitate 

patient education and adherence to clinical recommendations. We will release our technology 

platform as an open-source tool that can be widely used by the healthcare and technology 

communities to develop and deliver future innovations. 

Currently, digital technologies for public health literacy and individual patient education 

are limited and not scalable. Nor do they leverage the vast amount of publicly available health-

related information online and on social media platforms. Providing a strong open platform will 

provide a credible alternative to the vested interests of private organizations with proprietary 
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technologies, which will lead to future innovations in novel data collection devices and 

technologies in the context of health literacy initiatives. 

 
Figure 10. Technical components of our video retrieval platform 

 

Our methodology to develop a patient educational video system for understandability by 

integrating human efforts, i.e., the perspectives of clinical practitioners and healthcare consumers, 

with machine learning algorithms is an innovative approach to a societally challenging problem. 

Patient empowerment and engagement are essential for appropriate disease management. For 

health organizations that are producing patient educational materials, our approach could be used 

as an educational tool for enhancing understandability in patient educational video content design. 

When designing educational materials, we have the potential to provide best practice guidelines 

regarding how organizations should engage health consumers with educational videos for varying 

levels of health literacy. Understandability can be further improved with the use of visual aids, 

summaries, and tangible tools such as personalized charts. The individual-level assessment can 

help identify highly understandable videos. Our study could add to patient communication and 
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education literature and practice by enabling clinical practitioners to identify the most 

understandable, medically informative, and engaging videos for their patients as digital therapy. 

The combination of algorithmic approaches and impact evaluation aims to find the right 

intervention methods that can allow both platform designers and clinicians the ability to retrieve 

the appropriate videos (as a digital therapeutic tool). Our methods parallel recent efforts by digital 

platforms to identify authoritative sources and amplify credible content.  

 

Figure 11. Contributions to Practice 

 

5.3 Limitations and future directions  

This study has some limitations. Our study is built on the PEMAT developed by AHRQ. Although 

it is the most prevalent evaluation tool on patient education materials, PEMAT is not designed for 

user-generated content but for materials produced by healthcare organizations. The PEMAT 

criteria may need to be adapted/extended to YouTube videos in evaluating sub-criteria, such as 

whether the materials used for illustration were uncluttered, etc.  In future work, we would like to 

explore alternative assessment tools or develop one which is more suitable for user-generated 

videos. PEMAT does not define numerical values for “good” or “bad” scores. Rather it serves as 

a comparison between materials. Therefore, its interpretation can be subjective. We also relied 

heavily on the evaluation of patient education materials from four physician evaluators, which 

poses the risk of evaluator bias. The calculated kappa score indicates that there was variability in 

the reviewers’ use of tools. However, we minimized this limitation by using the adjudication 
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process for each item with a discrepancy which is the accepted method to achieve consensus 

scores. Additional video features that focus on aesthetics, production qualities, whether the video 

contains a human, and so on are not used in this study due to our restricted definition of video 

understandability following the guideline of AHRQ. In addition to patient educational guidelines, 

it may also be necessary to examine factors such as concordance, which is the similarity, or shared 

identity, between physicians and patients based on a demographic attribute, such as race, gender, 

or age (Street et al. 2008). Future work may incorporate these features to potentially improve the 

value of the recommended videos.  

5.4 Conclusions  

In this paper, we develop a human-in-loop, scalable, and multi-modal algorithmic solution to 

evaluate the understandability of healthcare information on social media platforms. Assessing the 

educational value of videos in domains ranging from healthcare to education still requires domain 

expertise to gauge the content. The evaluation results suggest that our method demonstrated an 

optimal combination of human expert involvement and algorithmic decision. The results show that 

video understandability in health educational videos is not only critical to engagement on the social 

media platform but also valuable to medical experts when recommending content for patient 

education.  Our proposed solution can also provide health organizations with actionable guidance 

in designing and creating patient educational videos.  

Future work can build on our approach to create a method of automated video retrieval that 

would accommodate users’ varying levels of both literacy and engagement. Future work can also 

build on the methods developed in this paper to develop multi-criteria recommendations for a 

range of video content on topics such as education, investing, and virtual communities based on 

metadata and video features from large social media platforms such as YouTube.  
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