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Abstract

Machine learning (ML) algorithms used by financial lenders in their screening processes are

hidden from the consumers who are affected by their decisions leading many consumers to make

sub-optimal decisions when seeking credit. Despite increasing calls for greater transparency,

only a few lenders provide personalized approval odds to consumers (e.g. via financial inter-

mediaries like Credit Karma or pre-approval tools). We investigate how competition among

algorithmic lenders affects their decisions to provide approval odds to consumers. We show that

competitive pressures between lenders can undermine the disclosure incentives. Lenders use

asymmetric disclosure of approval odds strategically to soften the competition when their al-

gorithms are fairly accurate. The asymmetric disclosure of approval odds endogenously creates

product differentiation and allows lenders to focus on different segments of consumers softening

the competition on the interest rates. We find that consumer surplus is highest when both

lenders provide approval odds and lowest when neither provides approval odds. However, our

analysis also shows that any policy that mandates all lenders to provide personalized approval

odds to consumers may not necessarily improve consumer surplus.

Keywords: Algorithmic transparency, competition, fintech, machine learning, financial in-

termediary, game theory.

1 Introduction

Financial lenders (“lenders” hereafter; e.g., banks) acquire proprietary information about borrowers

and use machine learning (ML) algorithms in screening processes to predict their credit risk (Citron

and Pasquale, 2014). These ML algorithms are usually hidden from the borrowers who are affected

by the algorithms’ decisions. Hence, potential borrowers face considerable uncertainty about their

odds of approval when they seek a financial product (Experian, 2020a) 1. Every lender has its

own proprietary algorithm. As a result, a borrower may receive different decisions from different

∗All authors are at Carnegie Mellon University.
1Consumers who are seeking credit are potential borrowers. Consumers who have received credit are borrowers.

With some abuse of notation, we refer to potential borrowers as borrowers in the rest of the paper to be concise
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lenders for comparable financial products.2 Further, when a lender pulls a credit report to calculate

approval odds for a borrower, it appears as a hard inquiry on the borrower’s credit report, which

can reduce the borrower’s credit score (Experian, 2020b).

Financial intermediaries, such as Credit Karma, Quizzle, Credit Sesame, NerdWallet, and Wal-

lethub, have emerged to help borrowers make better financial decisions when facing opaque al-

gorithms by lenders (Andriotis, 2014).3 These intermediaries give borrowers free access to their

credit reports and use the credit information to serve them advertisements for credit cards, loans and

other financial products (Popper and Merced, 2020). They earn a fee when a borrower purchases

an advertised financial product. The financial intermediaries reverse-engineer lenders’ screening

algorithms using data they have on the borrowers who were approved in the past for the same

product, and provide personalized odds of approval for a financial product to borrowers (Lockert,

2020). The estimated approval odds that intermediaries provide can reduce borrower uncertainty

and help them more efficiently choose which lender to apply to.

Financial lenders can further reduce borrower uncertainty by offering pre-approval tools or by

revealing their algorithm to intermediaries so that they can report accurate personalized approval

odds to borrowers.4 The resulting uncertainty reduction for borrowers can lead to market expansion

for the revealing lenders. At the same time, the revealing lenders’ algorithms are protected against

gaming by the borrowers as only the outcome of the algorithms, not the algorithms themselves, is

shared with borrowers. The provision of personalized approval odds to the borrowers by the lenders

is akin to “partial algorithmic transparency”.

Despite obvious advantages of the partial algorithmic transparency discussed above and increas-

ing calls for algorithmic transparency in general from different sections of the society (Diakopoulos,

2016, Fu et al., 2020, Wang et al., 2020, Pasquale, 2015, Kroll et al., 2017), only two of the five

largest lenders have chosen to share their secret screening algorithms with a financial intermedi-

2Differences in lenders’ screening algorithms also lead to the “Winner’s curse” that has been widely documented in
the banking literature: If credit screening is imperfectly correlated across lenders and lenders are unaware of whether
a borrower has been rejected by other lenders, borrowers rejected by one lender can apply to another lender. This
systematically worsens the pool of applicants faced by all lenders (Broecker, 1990b).

3Credit Karma is the largest of these financial intermediaries. It provides free credit reports from TransUnion
and Equifax to its more than 100 million registered users and allows them to shop for credit cards, loans and other
financial products (Lunden, 2020).

4With pre-approval tools the lenders can directly provide approval odds to potential borrowers reducing their
uncertainty. However, the pre-approval tools that the lenders can provide suffer from some limitations. In the pre-
approval process, borrowers give the lender the authorization to conduct a soft inquiry on their credit report. Soft
inquiries do not affect a borrower’s credit score negatively. However, a soft inquiry does not return as detailed a
credit information to the lender as a hard inquiry does. As a result, being pre-approved is an informative indicator
but does not guarantee the approval of borrowers’ formal application to the lender. Intermediaries like Credit Karma,
on the other hand, have access to the full credit report of borrowers. In many cases, the intermediary and the lender
may use credit reports from different agencies which may lead to some inaccuracies in the intermediary provided
approval odds even when the lender reveals its screening algorithm to the intermediary. Throughout the paper, for
simplicity, and without loss of generality, we assume that if the lender reveals its algorithm to the intermediary, the
intermediary provided approval odds to the borrowers for this lender will be accurate.
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ary that reports approval odds for financial products (Rudegeair and Andriotis, 2018). Relatedly,

through a survey of several lenders’ websites, we find a similar asymmetry in lenders’ offering of

pre-approval tools for their credit cards. We find that lenders do not offer pre-approval tools for

their credit cards at all times, and at any time only a few offer those tools.5 These observations

are in contrast to the predictions of the “unraveling” theory (Milgrom, 1981, Grossman, 1981),

which argues that a privately informed seller will voluntarily disclose all information of its product

when such disclosure is costless and credible. In this study, we provide one potential reason in the

algorithmic lending context that prevents the unraveling results from happening. We show that

competition may prohibit some lenders from providing partial algorithmic transparency.

We investigate competition among lenders on intermediary platforms like Credit Karma that

provide personalized approval odds for financial products to borrowers. We specifically focus on

strategic algorithm revelation by lenders to the intermediary. We answer why asymmetric reveal-

ing of the algorithm to the intermediary by symmetric lenders is an equilibrium outcome. We

further examine how the accuracy of the lenders’ algorithms, the accuracy of the intermediary’s

reverse-engineered algorithm, and the riskiness of the market affect the lenders’ decisions to reveal

their algorithms. Finally, we investigate how a policy that mandates algorithm sharing with the

intermediary affects borrower surplus?

To our knowledge, the strategic considerations in and the consequences of lenders’ decisions

to reveal screening algorithms to the intermediary or approval odds directly to borrowers has

not been studied yet. The existing research has largely focused on either the consequences of

sharing information related to product features with consumers in the strategic information sharing

literature (e.g. Guo and Zhao (2009), Kuksov and Lin (2010)), or the consequence of acquiring

or sharing borrowers’ information with other lenders in the lender competition literature (e.g.

Hauswald and Marquez (2003, 2006)). Our study examines a new type of information that can

be shared to reduce borrower uncertainty, and discuss implications of such revealing behavior for

competition, social welfare, and public policy. Hence, our paper provides new insights on strategic

information sharing in the context of algorithmic lending under competition.

Competition introduces key dynamics that may affect a lender’s decision to reveal its algorithm.

Let us first illustrate how competition plays out in an algorithmic lending scenario with an example.

First, consider a monopoly lender, and two types of borrowers, H (low default probability) and L

(high default probability). The lender’s algorithm predicts a borrower’s type with 70% accuracy. In

other words, the lender’s algorithm will mistakenly predict a H type borrower as L type or predict

a L type borrower as H type with a 30% probability. Under this algorithm, when the lender sees a

5For example, on October 19, 2021, Citi Bank, Chase and PNC were not offering the pre-approval tools for their
credit cards whereas American Express, Capital One and Discover Card were.

3



borrower with a predicted type H, it knows the probability that this borrower’s true type is H is

70% (i.e., Pr(Type = H|Predict = H) = 0.7). In this monopoly case, whether the lender reveals

the algorithm to the intermediary (i.e. the approval odds to the borrowers) or not, it will not

influence the lender’s posterior belief (after observing the borrower’s application behavior) about

the borrower’s type. However, this is no longer the case in a competitive environment.

Let us now consider a duopoly setting, where two competing lenders (i and j ) are evaluating

borrowers using their own algorithms. Assume that their algorithms are independent but have the

same accuracy. If these algorithms are kept secret and borrowers randomly apply to one of the two

lenders, the posterior probability Pr(Type = H|Predict = H) as defined above is still 0.7 for both

lenders. However, if a borrower knows her expected predicted type before applying to a lender

(for example, through the approval odds provided by the intermediary or through pre-approval

tools), she will be able to tell which lender is more likely to approve her application and would

choose to apply to that lender. From lender i ’s perspective, the probability of a borrower that

its own algorithm predicts as type H being an actual H type is no longer 0.7. The fact that this

borrower applies to lender i but not lender j indicates that she may have gotten a worse predicted

outcome from lender j and this fact contains useful information about the borrower’s true type. The

posterior probability of the borrower being of H type is in fact 0.65.6 This posterior probability is

lower than 0.7 because the lender is able to incorporate an informative signal from the competitor.

In competition, the borrowers can be divided into many segments based on the predictions of

the two lenders. For some borrowers the predictions of type by the lenders will be same, whereas

for others they may differ. Borrowers who are classified as H type by both the lenders appear less

risky to the lenders and those who are classified as H type only by one lender appear riskier in

comparison. However, to attract the borrowers who are classified as H type by both the lenders,

the lenders have to intensely compete on the interest rate. In contrast, the riskier segment which

only the focal lender classifies as H type can only be approved by the focal lender. As a result,

the focal lender does not face competition for this segment of borrowers. However, the focal lender

does not observe the predictions of the competing lender. Hence, it cannot differentiate whether an

applicant that it classifies as H type, gets classified as H type or L type by the competing lender.

As a result, borrowers in both the segments are offered the same interest rate. However, the lender

can calculate the segment sizes as a well as their risks in expectation. The relative segment sizes

and their riskiness determine the intensity of the competition. As the size (risk) of the segment that

corresponds to borrowers who are classifies as H type by both the lenders increases (decreases), the

6The posterior probability of the borrower being of H type can be calculated as: Pr(Type = H|Predicti =

H,Apply = i) = Pr(Apply=i|Type=H,Predicti=H)Pr(Type=H)
Pr(Apply=i)

=
Pr(Predicti�Predictj |Type=H,Predicti=H)Pr(Type=H)

Pr(Apply=i)
=

(0.5×0.7+(1−0.7)×0.5)
0.5

= 0.65, where Predicti(Predictj) denotes the prediction that the borrower receives from lender
i(j).
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intensity of competition increases. In contrast, as the size (risk) of the segment that corresponds

to borrowers who are classifies as H type by only one lender increases (decreases), it softens the

competition. The revelation of the algorithms by lenders would affect the intensity of competition

that lenders face via affecting the sizes and risk of the different borrower segments.

Formally, we analyze a multi-stage game within a duopoly of symmetric lenders who use ML al-

gorithms to approve or reject borrowers who have apply for their financial products. The borrowers

are modeled as H type and L type. The H type borrowers have a lower default rate than the L type

borrowers. The borrowers decide which lender to apply to or they can choose not to apply to either.

The two lenders are symmetric in their algorithms’ accuracy and offer financial products that are

identical in terms of non-price features (e.g. loan amount, credit line, and credit limit, etc.). The

lenders decide (1) whether to reveal their algorithm to the intermediary or not and (2) the interest

rate that they will charge for their financial product. We model the intermediary as non-strategic.

The intermediary shows the financial products of both the lenders to the borrowers. The lenders

pay the intermediary a fixed fee for any borrower who applies for the advertised product and is

approved by the lender. The fee that the intermediary charges to the lenders is assumed to be

exogenous. We solve for lenders’ and borrowers’ surplus in three scenarios – (i) both lenders reveal

the algorithm to the intermediary, (ii) neither lender reveals the algorithm to the intermediary, and

(iii) only one lender reveals the algorithm to the intermediary. We use the sub-game perfect Nash

equilibrium (SPNE) as our solution concept.

Algorithmic lenders have to consider two key forces – market expansion and competition –

while deciding whether to reveal their algorithm to the intermediary or not. The following points

explain the intuition behind the market expansion and competition intensity effects in the scenarios

(i)-(iii) defined above. Following the example above, we refer to the lenders as i and j where

lenders only want to approve H type borrowers. For ease of understanding, we define “common”

and “captive” segments. For lender i, the borrowers who both lender i’s algorithm and lender

j’s algorithm (or the intermediary’s reverse-engineered algorithm for lender j if lender j chooses

not to reveal its algorithm) classify as H type constitute the common segment. In contrast, for

lender i, the borrowers who lender i’s algorithm classifies as H type but lender j’s algorithm (or

the intermediary’s reverse-engineered algorithm for lender j if lender j chooses not to reveal its

algorithm) classifies as L type constitute lender i’s captive segment. Further, we use profitability of

a segment to capture the size and risk of a borrower segment. A segment becomes more profitable

if its size increases or its risk reduces or both. We find that in the three scenarios discussed next, an

interest rate equilibrium in pure strategies does not exist; there exists an interest rate equilibrium

in mixed strategies.

• If both lenders choose to reveal, the borrowers face no uncertainty. All the borrowers who
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would be approved by the lenders apply to either lender in this case. As a result, lenders

benefit from the market expansion effect due to the reduced borrower uncertainty. However,

the competition between the lenders in this case is the most intense. The signal that lender i

receives about an borrower’s type from lender j is the most precise in this case, and therefore,

borrowers in the common segment are most profitable because their posterior probability of

being of H type is the highest in this scenario. Further, borrowers in the captive segment

for a lender are less profitable as their probability of being of H type is the lowest in this

scenario. At the same time, the common segment is the largest and the captive segment is

the smallest in this scenario. As a result, lenders compete aggressively on the interest rate,

denoted as b, and set a low interest rate to attract borrowers in the common segment.

• If neither lender chooses to reveal the algorithm to the intermediary, borrowers face the most

uncertainty. Borrowers make decisions based on the intermediary’s noisy predictions rather

than the output of the lenders’ algorithms. Consequently, many borrowers make sub-optimal

decisions (i.e., applying to a lender that would reject them, or not applying at all when they

could have been approved by a lender). The market coverage by the lenders is the lowest in

this case. However, the competition faced by the lenders is less intense than in the “both

reveal” scenario. The signal that a lender receives from its rival is noisy and as a result is

given less weight. Hence, compared to the “both reveal” case, the borrowers in the common

segment are less profitable (both in terms of size and risk) in the “neither reveal” case. On

the other hand, in the “neither reveal” case, the borrowers in the captive segment are more

profitable (both in terms of size and risk) compared to in the “both reveal” case. As a result,

lenders have less incentive to reduce interest rate to compete for the borrowers in the common

segment and more incentive to set a high interest rate to exploit their captive segments.

• If only one lender (lender i) reveals its algorithm, it can benefit from the market expansion

effect. By revealing its algorithm, it removes the noise added by the intermediary’s prediction

to the approval odds borrowers have access to. Hence, borrowers do not make any sub-optimal

decisions regarding whether to apply to lender i. While lender j has to sacrifice the market

expansion effect, it receives a more precise signal from lender i. This creates asymmetry in how

the two lenders view their common and captive segments. Both lenders prefer their common

to their “captive” segments. However, in comparison to lender i, lender j views its common

segment to be relatively more profitable and its captive segment relatively less profitable. This

consequently affects lenders’ strategies in setting interest rate. While lender i would like to

avoid intense competition for the common segment and generate more profit from its captive

borrowers, lender j focuses more on the common segment and set competitive interest rate

to capture these borrowers. As a result, lender i can take advantage of the market expansion
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effect and extract greater surplus from borrowers it approves, and lender j can capture a large

portion of the common segment without having to reduce interest rate to a very low level.

We find that when the lenders’ algorithms are accurate, the SPNE is asymmetric such that

one lender chooses to reveal its algorithm to the intermediary while its competitor chooses not to

reveal. Otherwise, both lenders should reveal their algorithm to the intermediary.

The asymmetric equilibrium in algorithm revelation is our most important and least intuitive

result. We characterize the conditions needed to sustain an asymmetric SPNE in terms of the

accuracy of the lenders’ algorithms. One of the lenders always has an incentive to reveal its

algorithm because of the market expansion effect. However, the competing lender would reveal

its algorithm only when the accuracy of the lenders’ algorithms is below a threshold. The relative

profitability of the common segment to the captive segment determines the intensity of competition

in interest rates. When the lenders’ algorithms’ accuracy is low, the intensity of competition is not

very strong even when both lenders reveal their algorithms. This is because the lenders’ algorithms

would incorrectly classify many H type borrowers as L type, and vice versa. As a result, the

common segment is only marginally profitable compared to the captive segment. At the same time,

by revealing their algorithms, both lenders benefit from the market expansion effect. Hence, both

lenders will choose to reveal their algorithms when their algorithms’ accuracy is low. In contrast,

an asymmetric equilibrium is observed when the accuracy of the lenders’ algorithms is high. In

this scenario, the non-revealing lender has no incentive to deviate from the non-revealing strategy,

because if it does so, the resulting competition would be very intense. The negative effect of

competition dominates the gains from the market expansion effect for the non-revealing lender. We

further find that the threshold in lenders’ algorithm accuracy over which asymmetric equilibrium

is sustained is moderated by the accuracy of the intermediary’s reverse-engineered algorithm and

by the riskiness of the market.

Our results reveal a unique connection between lenders’ algorithm revealing strategies and the

degree of “product differentiation” that arises endogenously from lenders’ revealing decisions. We

find that lenders can use asymmetric revealing as a strategic tool to differentiate themselves and

soften the competition. Asymmetric revealing of algorithm leads to asymmetry in the interest

rates for products with identical non-price features which in turn diversify borrowers’ preferences.

In the asymmetric equilibrium, the revealing lender always gets a higher equilibrium payoff than

the non-revealing lender, which implies that when conditions that support asymmetric equilibrium

exist, a lender should take the opportunity to reveal its algorithm first.

From a social-welfare perspective, lenders’ algorithm revealing behavior increases the efficiency

of credit markets because it helps borrowers avoid non-optimal applying decisions. While borrower
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surplus is the highest when both lenders reveal their algorithms to the intermediary in our model,

our analysis suggests regulating lenders to reveal their algorithms to the intermediary (or to pro-

vide pre-approval tools) may have some drawbacks. Particularly, lenders have less incentive to

invest in their algorithm’s accuracy under the “both reveal” case. The reason is that in the “both

reveal” case, both lenders focus on the common segment of consumers. Increased algorithm accu-

racy increases the profitability of the common segment vis a vis captive segment which intensifies

competition. In contrast, this is not the case in the asymmetric revealing equilibrium. When policy

makers are considering regulations on algorithmic transparency, they should be aware that manda-

tory transparency may reduce lenders’ incentive to invest in algorithmic screening technologies,

which in the long term may not help allocate financial resources to more creditworthy borrowers.

The rest of this paper is organized as follows: §2 provides relevant literature and explain our

contributions to it, §3 introduces the general setup of our model, §4 contains the bulk of the analysis,

§5 discusses an important extension to the main model, and §6 concludes.

2 Contributions to Literature

In this section, we discuss the relevant literature and how our study contributes to it. Credit

markets suffer from information asymmetry where lenders (firms) are uncertain about borrowers’

(consumers’) credit worthiness. A large stream of literature in economics has shown that in the

presence of information asymmetry, firms can effectively employ screening techniques to learn more

about consumers’ type to make better selection of consumers (Stiglitz, 1975). In credit markets,

lenders use secret screening algorithms to screen borrowers for their creditworthiness.

The first stream of literature relevant to our study investigates how strategic information acqui-

sition affects the screening abilities of lenders and as a result credit market competition. Hauswald

and Marquez (2003) show that investment in screening technologies by a lender would soften the

competition in the short term but intensify it in the long term. On the one hand, the advanced

screening technologies will give the informed lender an “information advantage” and thus discourage

the uninformed lender to compete. On the other hand, the uninformed lender would also be able to

observe some public signals from the informed lender without performing screening. Consequently,

the informed lender’s information advantage would deteriorate and competition would intensify. In

a subsequent paper, Hauswald and Marquez (2006) study how lenders adapt their information ac-

quisition strategies to soften the intensity of competition. They find that as competition increases

(e.g., the number of lenders in the market increases), lenders respond by focusing more on the

specialized screening but not broad-based screening. Doing so helps the lenders “specialize” and

capture their captive segment of borrowers softening competition. Other related studies show that
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lenders can soften the competition and screen less by coordinating (Bouckaert and Degryse, 2004)

or through product differentiation (Villas-Boas and Schmidt-Mohr, 1999).

Our paper contributes to the above stream of literature in that we identify asymmetric revealing

of algorithms to the intermediary as a possible strategy to soften competition on interest rates. All of

the information acquisition and exchange strategies discussed in the literature above directly affect

the performance of the screening algorithm. Whereas lenders’ strategy of revealing information

on algorithmic decisions to borrowers, which is the focus of our study, does not directly affect the

performance of the screening algorithm, but could change the intensity of competition through

other channels. From the perspective of information flow, most of the above papers only consider

information asymmetry in one direction, that is, lenders do not perfectly observe borrowers’ credit

worthiness. They overlook the information asymmetry that exists in the other direction, that

is, borrowers do not know whether they will be approved ex ante. Our paper squarely focuses

on the uncertainty faced by borrowers and how lenders’ algorithm revealing decisions affect this

uncertainty and the competitive structure of the credit market.

Beyond the lending context, our paper is connected to a broader literature on strategic infor-

mation revealing. This stream of literature discusses firms’ strategic decision on whether to reveal

information to consumers to reduce consumer uncertainty. The information here usually refers to

the features of the products. The first important result from this literature is the unraveling theory

(Milgrom, 1981, Grossman, 1981), which shows that a privately informed seller will voluntarily

disclose all information of its product when such disclosure is costless and credible. As a result,

mandated disclosure is redundant. However, this prediction is not consistent with many empirical

observations. As a result, several researchers propose explanations for this inconsistency, such as

disclosure is usually not costless or consumers are not always aware of such disclosure (Fishman

and Hagerty, 2003). Later, more involved theories have been put forward to study the influence of

various market structures on firms’ information revealing decisions, and many studies argue that

competition could be the potential reason that prevents the unraveling results from happening

(Board, 2009, Levin et al., 2009).

Our paper is closely related to the papers that study information revelation under competition.

In these studies, typically, firms are modeled as vertically or horizontally differentiated in quality

(of their products), and consumers are uncertain about the quality of the products. Each firm

compares the competition intensity under uncertainty, i.e., consumers making decisions based on

their perceived product quality, and under full information, i.e., consumers making decisions based

on the actual product quality. Firms make a strategic decision on quality revelation based on

whether such revelation would intensify the competition or soften it (Board, 2009, Levin et al.,

2009, Kuksov and Lin, 2010, Gu and Xie, 2013). Our paper is similar to this stream of literature in

9



that we also point out that competition may hinder the information revealing and show that it could

lead to asymmetric revealing decisions even when the revealing cost is zero. However, our paper is

differentiated in at least three important aspects: (1) while these papers study firms’ decisions on

revealing product quality, our paper studies the firms’ decisions on revealing another dimension of

information to reduce buyers’ uncertainty, and thus expand the strategic information revealing to a

boarder context which involves information asymmetry. (2) The asymmetric revealing equilibrium

found in these papers is a result of differentiated firms. In contrast, our paper find asymmetric

revealing equilibrium even when the two firms are symmetric and provide products with identical

non-price features. Our paper identifies several new insights and a novel mechanism that could

help explain the observed asymmetric revealing behavior by symmetric firms.

Our paper is also related to the literature on firms’ strategies in differentiating products when

facing heterogeneous consumers (See (Tirole and Jean, 1988) for a compete review). We extend this

literature to the field which involves information asymmetry. Although in our model, we assume

the products to be identical, and thus borrowers (consumers) should derive the same utility ex

post from both products if the prices are the same, borrowers do have a preference between these

identical products ex ante because they believe they have a greater chance of getting approved

for one product than the other. We show that asymmetric revealing of the algorithm will play

a strategic role in differentiating products and diversifying borrowers’ preferences. By revealing

the algorithm, a lender becomes more profitable to the borrowers for whom the algorithm predicts

a positive approval outcome. As a result, the lender can extract greater surplus from them by

charging a higher interest rate. At the same time, the competing lender has to keep a low interest

rate to stay competitive in the market. Hence, endogenously, asymmetric algorithm revelation by

ex ante symmetric lenders leads to differentiated products and softens competition.

Finally, our work is related to the emerging stream of literature on algorithmic transparency.

This stream of literature has primarily considered the problem of designing optimal classification

algorithms when facing strategic users who may manipulate the input to the system at a cost

(e.g. (Hardt et al., 2016, Haghtalab et al., 2020, Kleinberg and Raghavan, 2019, Meir et al., 2012).

However, Wang et al. (2020) argue that a firm can strategically leverage gaming by users to its

benefit if it were to make its algorithm transparent. Our work is related to this stream of literature

in that algorithm revelation by the lenders is akin to partial algorithmic transparency. However,

we differ from the literature in that partial algorithmic transparency does not make the lender’s

algorithm susceptible to gaming by users. More importantly, none of the paper on algorithmic

transparency have considered the effect of competition on a firm’s decision to reveal its algorithm.

Our paper squarely focuses on the competition effects in the context of algorithmic lending and

transparency.
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3 Model

We consider a duopoly credit market of two competing lenders that sell financial products to

borrowers on a financial intermediary’s platform. We begin by describing borrowers and lenders;

then we explain the sequence of decisions.

3.1 Borrowers

We model two types of borrowers, high-quality (non-defaulter) and low-quality (defaulter), denoted

as H and L, respectively. We use θ to denote the portion of H type borrowers in the market.7

For simplicity, following a relevant stream of literature in Finance and Economics, we assume

that a borrower’s type is unknown to both herself and the lender before she enters into a credit

relationship (Sharpe, 1990, Hauswald and Marquez, 2003, Ruckes, 2004).8 This could be the case

if say, a borrower and her lender gradually gather new information about her ability to manage

her finances. However, the portion of H type borrowers, θ, is common knowledge. Borrowers are

considering to apply for a financial product (e.g., credit card or loan). We assume that the amount

of the loan is fixed, and we normalize it to 1. A borrower’s utility from applying conditional on her

type and the approval outcome is as follows:

U =


Mh −m− b if she is H type and gets approved

Ml −m− b if she is L type and gets approved

−m, if she gets rejected

where Mh(Ml)
9 is the overall benefit that a H(L) type borrower can get from the financial product

(e.g., the monetary value and/or convenience brought by a credit card). b is the price of the financial

product (e.g., the interest rate of the loan or the fee of the credit card), and −m is the cost of

applying (e.g., a hard inquiry on credit record and time/effort spent on the application process).

The utility a borrower will receive if she does not apply is normalized to zero. We assume borrowers

will apply to at most one of the lenders in the market.10 Note that when a borrower makes the

7We model borrowers as either defaulters or non-defaulters, but our model can be easily generalized to the case
where the H type borrowers default with a probability of ε1 while the L type default with a probability of 1 − ε2,
where ε1 < 0.5 and ε2 < 0.5. The results of the paper still hold.

8This is not a critical assumption since our results hold even when we relax this assumption. We use this
assumption to keep our model clean and easy to follow. There are other papers in Finance and Economics that
assume that borrowers know their types. However, they assume away any self-selection devices and thus different
types of borrowers’ applying behavior is identical(Broecker, 1990a, Shaffer, 1998).

9In many other models, Mh is assumed to be larger than Ml, since L type borrowers have to incorporate the
dis-utility associated with the reputation loss once they default. However, this assumption is not necessary in our
setting.

10We can think of this as that the marginal benefit of getting a second financial product decreases sharply so that
borrowers will not apply to multiple lenders simultaneously.
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application decision, she does not know her type or whether she will be approved. Instead, she

infers both her type and her probability of getting approved by lenders from the predictions she

gets from the intermediary. Based on this information, she computes the expected utility she can

receive from applying to each lender,11 and applies to the lender that provides a higher expected

utility (to be elaborated in Section 4.3). To facilitate discussion, hereafter, we will use personal

loan as an example of the financial product.

3.2 Lenders

There are two symmetric lenders in the market, providing homogeneous loans to borrowers. That

is, the loans have identical non-price features but may come with different interest rates. Each

lender has its own screening algorithm. We assume that the algorithms of the two lenders are inde-

pendent but have the same level of accuracy, and the algorithms are equally accurate in predicting

the positive and negative cases (i.e., the true positive rate equals the true negative rate). Mathe-

matically, the accuracy of the lenders’ algorithms is characterized by Pb ∈ (1
2 , 1]12: the algorithm

predicts a H type applicant as H type with probability Pb, and a L type applicant as L type with

probability Pb.

The value of a non-defaulter to a lender equals the interest rate set by the lender: b, and the

value of a defaulter to a lender equals the negative of the loan amount, which has been normalized

to −1. The utility that a lender receives if it approves nH H type applicants and nL L type

applicants is given by

Π = nHb− nL (1)

3.3 Intermediary

The intermediary helps borrowers evaluate their chances of getting approved. If a lender’s algorithm

is hidden from the intermediary, the intermediary provides the predicted odds based on its’ own

reverse-engineered algorithm. The accuracy of the intermediary’s algorithm is characterized by

11Specifically, if a borrower knows that she will be approved by a lender with probability pa and is a H type
borrower with probability ph, her expected utility from applying to the lender is E(U) = pa(ph(Mh −m− b) + (1−
ph)(Ml −m − b)) − (1 − pa)m. Here she infers both pa and ph from the predictions she gets from the intermediary
and her knowledge about the lenders’ revealing decisions (to be elaborated in Section 3.4). For example, if both
lenders reveal their algorithms, and the intermediary tells her that she will be approved by both lenders (which is
equivalent to both lenders’ algorithms predicting that she is of H type and thus approving her application, since both

lenders reveal their algorithms to the intermediary), she will infer that pa = 1 and ph =
P2
b θ

P2
b
θ+(1−Pb)

2(1−θ) (according

to Bayes’ rule), where Pb is the accuracy of the lenders’ algorithms, which will be formally defined in Section 3.2.
12Hereafter, we use subscript b or B to denote all the lender side parameters since we use ‘Bank’ as an example for

the lender.
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parameter Pc
13: The intermediary makes the same prediction as the lender with probability Pc.

14

Additionally, for simplicity, we assume that the intermediary has the same accuracy in predicting

the outcomes of the algorithms of the two lenders. The intermediary’s prediction is assumed to

be independent of borrowers’ true type given the lender’s prediction: the intermediary is only

interested in lenders’ prediction but not borrowers’ true type.15 If the lender reveals its algorithm

to the intermediary, the intermediary provides exactly the same prediction as the lender’s algorithm.

Whenever a borrower who applied to a lender through the platform is approved, the intermediary

gets a fixed commission fee c from the lender. In this paper, we set c = 0 for the ease of discussion.16

We model the intermediary as non-strategic. It simply predicts (imperfectly) lenders’ approving

decisions and reports it to borrowers. Borrowers make applying decisions based on the intermedi-

ary’s predictions but not the lender’s predictions, since the latter are not observed by borrowers at

the time of applying.

Our model can also be interpreted for a scenario where there is no intermediary. The inter-

mediary described above provides approval odds that we consider here would represent the prior

belief of the borrowers. In the absence of the intermediary, this belief may come from the informa-

tion gathered from online forums and past experience or by communicating with other borrowers.

The belief is positively correlated with the true outcome but is not perfectly accurate. Instead of

revealing the algorithm to the intermediary, without the presence of the intermediary, lenders can

provide information to borrowers through pre-approval tools.

3.4 Game Sequence

The sequence of stages in the game between the two lenders and the borrowers is as follows.

• STAGE 1: Algorithm Revealing Stage Each lender chooses whether or not to reveal its

algorithm to the intermediary simultaneously. Each lender’s decision is observed by the other

lender but not observed by the borrowers.17

13Hereafter, we use subscript c or C to denote all the intermediary side parameters since we use ‘Credit Karma’ as
an example for the intermediary.

14Note that Pc is not the accuracy of the intermediary’s algorithm in predicting borrowers’ type.
15Intermediaries like Credit Karma make money when borrowers who apply for a financial product through the

intermediary website get approved by the lender. Lenders make approval decisions based on their own algorithms.
Hence, it is incentive compatible for the intermediary to learn about the lenders’ predictions and not about the true
type of the borrowers.

16It is not difficult to see that setting c > 0 will not qualitatively change any of the results in this paper.
17We assume that borrowers could observe the number of lenders who reveals the algorithm, but not the specific

revealing decisions of each lender. For example, Credit Karma is not willing to tell which two of the five lenders have
revealed the algorithm. Additionally, by making this assumption, our model can be easily generalized to the case
where borrowers have no knowledge on either how many lenders reveal their algorithms to the intermediary or which
lenders do so.
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• STAGE 2: Pricing Stage Each lender chooses an interest rate b (b ∈ [0, b])18 for its financial

product.

• STAGE 3: Applying Stage The intermediary shows the financial products of both lenders

along with personalized approval odds to borrowers. Borrowers choose which lender to apply

to or choose not to apply to either.

• STAGE 4: Approving Stage The lenders receive applications and use their algorithms to

approve or reject borrowers. The payoffs to the lenders and the borrowers are then determined.

We use sub-game perfect Nash equilibrium (SPNE) as our solution concept. We solve for the

SPNE using backward induction. We proceed with the analysis in the next section. A summary of

notations can be found in Appendix A.

4 Analysis

4.1 Additional Assumptions

To avoid invalid and uninteresting equilibrium, we focus on the following parameter ranges:

Assumption 1

bθ − (1− θ) ≥ 0.

Assumption 1 says that granting loans to borrowers is ex ante efficient under interest rate b. This

assumption ensures that lenders can get non-negative equilibrium payoffs under mixed strategy

settings in all sub-games.19

Assumption 2

m <
Pc

(
(Mh − b)Pb2θ + (bθ − b+Ml −Mlθ)(Pb − 1)2

)
Pb

2(Pcθ + Pc − 1) + Pb(1− Pc) + (Pc − Pcθ)(Pb − 1)2

m >
MhPb

2θ(Pc − 1) +Ml(Pc − Pcθ + θ − 1)(Pb − 1)2

Pb
2(Pcθ + Pc − θ)− PbPc + (Pc − Pcθ + θ − 1)(Pb − 1)2

The two conditions in Assumption 2 ensure that borrowers will always follow the intermediary’s

recommendation: The first condition ensures that the cost to apply (m) is small enough (or equiva-

lently, the benefit from applying, Mh and Ml, are large enough) such that if a borrower is predicted

18b is the maximum interest rate that can be set by the lenders, for example, required by the law.
19Similar assumptions have been made in several papers, for example, in (Hauswald and Marquez, 2003) and

(Hauswald and Marquez, 2006), to ensure that lenders will not have an incentive to engage in ruinous competition
to obtain negative profits in equilibrium.
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(possibly inaccurately) as H type by the intermediary for a lender, even when the lender charges the

highest possible interest rate (b = b), the borrower will still choose to apply. The second condition

indicates that the cost to apply (m) is large enough (or equivalently, the benefit from applying, Mh

and Ml, are small enough) such that if a borrower is predicted as L type by the intermediary for a

lender, the borrower will not apply even if the interest rate is 0 (b = 0). The derivation of the two

conditions in Assumption 2 can be found in Appendix B.1.

4.2 Analysis: Approving Stage

We begin our analysis from the last stage, the Approving Stage. The lenders’ decisions in this stage

are trivial: They make the approving decisions based on the algorithm’s prediction. Specifically,

they will approve (reject) borrowers who are predicted by their own algorithm as H (L) type.

4.3 Analysis: Applying Stage

After seeing the approval predictions from the intermediary, as well as the interest rates set by the

two lenders, borrowers in this stage decide whether to apply and if so which lender to apply to.

By Assumption 2, borrowers will only consider the lender(s) for which receive a prediction of H

type from the intermediary. Specifically, (1) if a borrower learns from the intermediary that she

will be predicted as L type by both lender, she will choose not to apply to either lender; (2) if

a borrower learns from the intermediary that she will be predicted as H type by only one of the

lenders, she will apply to that lender; (3) if a borrower learns from the intermediary that she will

be predicted as H type by both lenders, she will apply to the lender who charges a lower interest

rate. Note that in cases (1) and (2), borrowers make such decisions regardless of the interest

rates the two lenders charge and the lenders’ revealing decisions. In case (3), borrowers’ decisions

depend on the interest rate but not the revealing decisions of the two lenders, since even in the

asymmetric revealing scenario, borrowers do not know which lender has revealed its algorithm, and

thus the only asymmetry from the borrowers’ perspective is the different interest rates the two

lenders charge. Recall that Assumption 2 says it is always incentive compatible for borrowers to

follow the intermediary’s prediction. The constraints in Assumption 2 depend on Pc. Specifically,

to ensure that borrowers will follow the noisy predictions by the intermediary, when Pc is high,

conditions on m becomes milder, and when Pc is low, conditions on m becomes stricter .

4.4 Analysis: Pricing Stage

In this stage, the two lenders anticipate borrowers’ applying strategies in Stage 3, and choose

pricing strategies that depend on the revealing outcome of Stage 1. We begin the analysis by
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solving each sub-game that results from lenders’ algorithm revelation choices in Stage 1. There are

three possible outcomes (sub-games) in Stage 1:

R-R: Both lenders reveal their algorithms.

N-N: Neither lender reveals its algorithm.

N-R: One lender reveals its algorithm to intermediary while the other lender chooses not to.

We analyze the cases (sub-games) R-R, N-N, and N-R in succession.

4.4.1 Common Segment vs Captive Segment

Borrowers make their decisions to apply to a lender based on the type predictions that they expect

to receive from the two lenders (or equivalently, the expected approval odds). There are four

possible combinations (i.e., borrower segments) based on borrowers’ belief in these predictions: HH

– borrowers who believe they will be predicted as H type by both lenders, HL – borrowers who

believe they will be predicted as H type for Lender 1 and as L type for Lender 2, LH – borrowers

who believe they will be predicted as L type for Lender 1 and as H type for Lender 2, and LL –

borrowers who believe they will be predicted as L type for both lenders.

The distribution of H and L type borrowers across the four segments will differ across the three

sub-games: R-R, N-N and N-R. Figure 1 shows how the H and L type borrowers are distributed

across the four segments in the R-R case. The top (bottom) expression in a cell computes the

number of H (L) type borrowers that belong to the corresponding segment. For example, the top

line in the HH segment reports number of H type borrowers who both Lender 1 and Lender 2

predict as H type. Each lender independently predicts the type of H type borrower correctly with

probability Pb and θ is the fraction of borrowers who are H type in the population. Hence, P 2
b θ is

the number of H type borrowers that fall in segment HH. The number of H and L type borrowers

in other segments can be calculated similarly as reported in Figure 1.

Because we assume Pb > 1/2 (see Section 3.2), most of the H type borrowers are concentrated in

the HH segment and most of the L type borrowers are concentrated in the LL segment. Similarly,

HH segment has the lowest number of L type borrowers and the LL segment has the lowest number

of H type borrowers. Therefore, the probability that a randomly chosen borrower from the segment

is H type is highest for the HH segment and lowest for the LL segment. As a result, borrowers in

HH are the most valuable (least risky) and LL are the least valuable (most risky) to lenders.

We can see that all borrowers who believe to receive a HH classification would be indifferent

between the two symmetric lenders if they charge the same interest rate. As a result, the lenders

will have to compete on this segment of borrowers in a Bertrand fashion. We refer to this segment

of borrowers whose probability of applying to either of the lenders is non zero as the common
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Figure 1: Common Segment vs Captive Segment for the R-R case

Note: From Lender 1’s perspective, the upper left cell is the common segment while the lower left is its captive
segment; From Lender 2’s perspective, the upper left cell is the common segment while the upper right cell is its
captive segment. The top line in each cell denotes the number of H type borrowers and the bottom line in each cell
denotes the number of L type borrowers in the corresponding segment.

segment. In contrast, the borrowers in segment HL (LH ) will only apply to Lender 1 (2) as they

believe only Lender 1 (2) will approve them. We refer to them as the captive segment for Lender

1 (2). The lenders will compete to attract borrowers from the common segment but would face no

competition for borrowers in the captive segment.

4.4.2 R-R: Both reveal

In the R-R case, borrowers observe accurate predictions from both lenders. A borrower knows

exactly whether she will be approved by each lender or not.

To make the discussion easier, we use the following notations: We refer to the predictions of a

borrower(k)’s type by Lender 1’s and Lender 2’s algorithms as Y 1
k,b and Y 2

k,b, respectively. In the

R-R case, lenders’ predictions are directly passed on to borrowers by the intermediary. A is the set

of all borrowers in the market. We define the following sets which correspond to borrowers in the

segments defined in Section 4.4.1:

Arrhh = {k ∈ A|Y 1
k,b = H,Y 2

k,b = H}

Arrhl = {k ∈ A|Y 1
k,b = H,Y 2

k,b = L}

Arrlh = {k ∈ A|Y 1
k,b = L, Y 2

k,b = H}

Arrll = {k ∈ A|Y 1
k,b = L, Y 2

k,b = L}

That is, Arrhh is the set of borrowers who are predicted as H type by both lenders, Arrhl is the set of

borrowers who are predicted as H type by Lender 1 and predicted as L type by Lender 2, etc. Let
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N rr
xy denote the number of borrowers and V rr

xy denote the fraction of H type borrowers in the set

Arrxy where x, y ∈ {h, l}. The values of N rr
xy and V rr

xy can be calculated from Figure 1. Since neither

lender will approve borrowers in Arrll , we omit the calculations of N rr
ll and V rr

ll below.

N rr
hl = Pb(1− Pb)θ + Pb(1− Pb)(1− θ)

V rr
hl =

Pb(1− Pb)θ
N rr
hl

= θ

N rr
hh = P 2

b θ + (1− Pb)2(1− θ)

V rr
hh =

P 2
b θ

N rr
hh

> θ

As discussed earlier, Arrhh is the common segment, and Arrhl and Arrlh are captive segments of

Lender 1 and Lender 2 respectively. The segment Arrhh is the most valuable segment for the two

lenders. The fact that the algorithms of both lenders predict these borrowers to be H type increases

the posterior probability (after accounting for the competitor’s prediction) that these borrowers are

in fact H type. On the other hand, the posterior probability that the borrowers in the two lenders’

respective captive segments, Arrhl and Arrlh , are in fact H type is lower and thus less profitable than

those in segment Arrhh for lenders 1 and 2, respectively. As a result, lenders intensely compete for

the segment Arrhh. The intensity of the competition is determined by the relative profitability of

the segment Arrhh compared with the segment Arrhl , where the profitability of Arrhh intensifies the

competition and profitability of Arrhl moderates the competition.

An important aspect of our context that is worth more clarification is that while a borrower

can observe the accurate personalized odds of approval from both lenders in the R-R case, a lender

cannot observe the approval odds that the competing lender gives to the borrower.20 When a

borrower, who the focal lender predicts as H type, applies to the lender, the lender cannot tell

whether the competing lender would have classified her as H type or L type. As a result, a lender

does not know whether the borrower is in segment Arrhh or Arrhl . In other words, lenders know the

existence of the four segments defined above, but they do not know which segment each borrower

belongs to. This implies that lenders cannot treat borrowers in the common and their own captive

segment differently (e.g., charge different interest rates).

We next derive lenders’ optimal strategies for setting their interest rates, b, in this case. The

borrowers in segment Arrhh are indifferent between the two lenders if the interest rates offered by the

two lenders are the same. They know that they will be approved by both lenders. The borrowers

in the Arrhl segment will only apply to Lender 1 and those in the Arrlh segment will only apply to

Lender 2. For borrowers in either lender’s captive segment, the interest rate offered by the other

20Lenders do not have access to their competitors’ algorithms or predictions.
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lender does not matter as they will not be approved by that lender.

The two lenders set the interest rate (b) of their financial product simultaneously. A pure

strategy equilibrium does not exist in this case. The reason is as follows: Both lenders will have

an incentive to undercut the competitor’s interest rate to attract borrowers in Arrhh. Since these

borrowers are indifferent between the two lenders if the two lenders charge the same interest rate,

choosing b that is just a bit smaller than the competitor’s will attract all of the borrowers in

the Arrhh segment. Once b drops below a certain level, one lender is better off raising b to only

focus on its captive borrowers Ahl (or Alh). Once a lender raises b, the other lender will have an

incentive to also raise b to just a little lower than the first lender’s, and then the war on cutting

b continues. Therefore, we study the mixed strategy equilibrium for pricing in this case, and

focus on the symmetric Nash equilibrium, i.e., the two lenders use the same mixed strategy. In

a mixed strategy, lenders randomize their b.21 Following the literature on mixed strategy pricing

(Varian, 1980), we use a probability distribution with a cumulative density function (CDF) F (b)

to characterize lenders’ strategy. The two lenders’ equilibrium strategy is summarized in Lemma

1, the proof can be found in Appendix B.2.

Lemma 1 The CDF of the distribution of lender’s equilibrium pricing (interest rate setting) strat-

egy is shown as follows:

F rr(b) =


0 if b < b

bPbθ−Pbθ−Pb(−bPbθ+bθ−Pbθ+Pb+θ−1)+Pb+θ−1

bPb
2θ+Pb

2θ−Pb2−2Pbθ+2Pb+θ−1
if b ≤ b < b

1 if b ≥ b

Each lender’s equilibrium payoff is:

Πrr = Pb
(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)

An interesting observation from Lemma 1 is that lenders’ equilibrium profit will decrease as the

algorithms’ accuracy increases. Taking derivative of lenders’ equilibrium payoff with respect to Pb,

we get

∂Πrr

∂Pb
= (bθ + θ − 1)(1− 2Pb) ≤ 0 (2)

As Pb increases, the common segment becomes more profitable, which intensifies competition. As

21In the real world, such a strategy can be interpreted as lenders offering different interest rates for periods of
a varying length, promotional interest rates or cash back rewards of a varying amount, which effectively changes b
(Varian, 1980).
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competition increases, the equilibrium interest rate gets lower, which decreases the profit from both

the common and the captive segments.

4.4.3 N-N: Neither Reveal

In the N-N case, borrowers learn their chances of getting approved by both lenders from the

intermediary’s algorithm. In Figure 2, we summarize the distribution of H and L type borrowers

in different segments based on the intermediary’s and the lenders’ predictions. As shown in Figure

2, there are 16 segments. Each segment is defined by the combination of the intermediary’s and

lenders’ predictions in the following sequence – Lender 1’s prediction, the intermediary’s prediction

for Lender 1, Lender 2’s prediction and the intermediary’s prediction for Lender 2. For example,

the segment HLHL includes all borrowers whom Lender 1 predicts as H type, the intermediary

predicts as L type for Lender 1, Lender 2 predicts as H type, and the intermediary predicts as

L type for Lender 2. In Figure 2, the number of H (L) type borrowers that belong to a segment

are shown in the top (bottom) row in the corresponding cell. The calculations are straightforward.

For example, to calculate the number of H type borrowers in HLHL, we multiply the following: (i)

Pb, the probability of Lender 1 predicting the H type correctly, (ii) 1− Pc, the probability of the

intermediary predicting the Lender 1’s prediction incorrectly, (iii) Pb, the probability of Lender 2

predicting the H type correctly, (iv) Pc, the probability of the intermediary predicting the Lender

2’s prediction correctly, and (v) θ, the fraction of borrowers who are H type in the population.

Without loss of generality, we discuss the results from Lender 1’s perspective. Since the lender

would not approve a borrower whom its own algorithm classifies as L type, Lender 1 will not approve

any borrower who falls under columns 3 and 4 in Figure 2. Further, following our assumption in

Section 4.1, borrowers who receive a prediction of L type from the intermediary for a lender would

not apply to that lender. As a result, borrowers who fall under the second column in 2 would not

apply to Lender 1. Hence, the only relevant borrowers for Lender 1 are the ones who fall under

Column 1. We define the following sets to capture the borrowers in Column 1 of Figure 2 for ease

of explanation. Note that Y 1
k,c (Y 2

k,c) denotes the intermediary’s prediction of an borrower(k)’s type

for Lender 1 (2).

Annhh = {k ∈ A|Y 1
k,c = H ∧ Y 2

k,c = H ∧ Y 1
k,b = H}

Annhl = {k ∈ A|Y 1
k,c = H ∧ Y 2

k,c = L ∧ Y 1
k,b = H}

Specifically, Annhh denotes the set of borrowers who are predicted as H type by the intermediary

for both lenders and are predicted as H type by Lender 1. This is the common segment since

borrowers in this segment do not have a preference between the two lenders. In Figure 2, the
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Figure 2: Common Segment vs Captive Segment for the N-N case

Note: From Lender 1’s perspective, the cells (Row 1, Column 1) and (Row 3, Column 1) combined are the common
segment while the cell (Row 2, Column 1) and (Row 4, Column 1) combined are its captive segment. From Lender
2’s perspective, cell (Row 1, Column 1) and (Row 1, Column 3) combined are the common segment while cells (Row
1, Column 2) and (Row 1, Column 4) combined are its captive segment. The top line in each cell denotes the number
of H type borrowers while the bottom line in each cell denotes the number of L type borrowers.

cell (Row 1, Column 1) and (Row 3, Column 1) together constitute Annhh . Annhl denotes the set of

borrowers who are predicted as H type by the intermediary for Lender 1, L type by the intermediary

for Lender 2, and are predicted as H type by Lender 1. This is the captive segment for Lender 1

since the borrowers in this segment will always apply to Lender 1. In Figure 2, the cells (Row 2,

Column 1) and (Row 4, Column 1) together constitute Annhl .

We use Nnn
xy to denote the number of borrowers and V nn

xy to denote the fraction of H type

borrower in the set Annxy where x, y ∈ {h, l}. From Figure 2, we can calculate:

Nnn
hh = P 2

c P
2
b θ + Pc(1− Pc)Pb(1− Pb) + P 2

c (1− Pb)2(1− θ)

V nn
hh =

P 2
c P

2
b θ + Pc(1− Pc)Pb(1− Pb)θ

Nnn
hh

> θ

Nnn
hl = Pc(1− Pc)P 2

b θ + Pc(1− Pc)(1− Pb)2(1− θ) + P 2
c Pb(1− Pb)

V nn
hl =

P 2
b Pc(1− Pc)θ + P 2

c Pb(1− Pb)θ
Nnn
hl

> θ

(3)

Compared to the R-R case, the competition between lenders in the N-N case is less intense.

As before, the relative profitability of the common segment intensifies the competition whereas the

relative profitability of the captive segment moderates the competition. Mathematically, we have
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Nnn
hh − Nnn

hl < N rr
hh − N rr

hl and V nn
hh − V nn

hl < V rr
hh − V rr

hl . This implies that compared to the R-R

case, where the Arrhh segment is highly profitable relative to the Arrhl segment, in the N-N case,

the difference between the profitability of Annhh and Annhl segment shrinks: While the intermediary

predicts the borrowers in segment Annhh to be H type for Lender 2 by definition, some of them may,

in fact, be classified as L type by Lender 2’s algorithm, because the intermediary’s prediction is

not perfect. Similarly, some of the borrowers in segment Annhl may in fact be classified by Lender

2 as H type while the intermediary classifies them as L type for Lender 2. In other words, the

intermediary’s prediction of the competing lender’s classification of a borrower’s type provides a

noisy signal for the competing lender’s classification. Hence, compared to the R-R case, lenders give

more weight to the prediction by their own algorithms when computing the posterior probability of

a borrower’s true type being H in the N-N case. As a result, the difference between the posterior

probability that borrowers in segments Annhh are H type and the posterior probability that borrowers

in segment Annhl are H type drops compared to the R-R case. At the same time, the difference in

size between the two segments also drops compared to the R-R case.

We next solve for the optimal strategies in setting b for the two lenders in the N-N sub-game.

As in the R-R case, a pure strategy equilibrium in interest rates does not exist in the N-N case.

Therefore, we study the mixed strategy equilibrium, and focus on the symmetric Nash equilibrium,

i.e., the two lenders use the same mixed strategy. We use a probability distribution with a CDF

Fnn(b) to characterize lenders’ pricing strategy in the N-N case.

Lemma 2 The CDF of the distribution of lender’s equilibrium pricing strategy in b is as follows:

Fnn(b) =


0 if b < b

bNnn
hh V

nn
hh +bNnn

hl V
nn
hl +Nnn

hh V
nn
hh −N

nn
hh +Nnn

hl V
nn
hl −N

nn
hl (bV nnhl +V nnhl −1)−Nnn

hl

Nnn
hh (bV nnhh +V nnhh −1)

if b ≤ b < b

1 if b ≥ b

Each lender’s equilibrium payoff is:

Πnn = Nnn
hl

(
bV nn
hl + V nn

hl − 1
)

The proof of Lemma 2 can be found in Appendix B.3.

4.4.4 N-R: Asymmetric Revealing

In the N-R case, one lender reveals its algorithm so the predictions that borrowers receive from

the intermediary reflect the true approval odds for the revealing lender. The other lender does

not reveal the algorithm to intermediary and the borrowers have to rely on the predictions of
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the intermediary’s reverse-engineered algorithm, which are not always accurate. Without loss of

generality, in the following discussion, we consider Lender 1 as the lender that reveals its algorithm

and Lender 2 as the lender that does not.

Similar to what we have done for the R-R and N-N case, in Figure 3, we show the distribution

of H and L type borrowers across different segments based on the intermediary’s and the lenders’

predictions. As can be seen in Figure 3, there are 8 segments. Each segment is defined by the

combination of the intermediary’s and lenders’ predictions in the following sequence – Lender 1’s

prediction, Lender 2’s prediction and the intermediary’s prediction for Lender 2. For example, the

segment HLH includes all borrowers whom Lender 1 predicts as H type, Lender 2 predicts as L

type, and the intermediary predicts as H type for Lender 2. In Figure 3, the number of H(L) type

borrowers that belong to a segment is shown in the top (bottom) line in the corresponding cell.

Figure 3: Common Segment vs Captive Segment for the N-R case

Note: From Lender 1’s perspective, the cells (Row 1, Column 1) and (Row 3, Column 1) together are the common
segment, while the cells (Row 2, Column 1) and (Row 4, Column 1) together are its captive segment. From Lender
2’s perspective, the cell (Row 1, Column 1) is the common segment, while the cell (Row 1, Column 2) is its captive
segment. The top line in each cell denotes the number of H type borrowers while the bottom line in each cell denotes
the number of L type borrowers.

Since the lender would not approve any borrower whom its own algorithm classifies as L type,

Lender 1 will not approve any borrower who falls under Column 2 in Figure 3. Similarly, Lender

2 will not approve any borrower who falls in Row 3 or Row 4 in Figure 3. Further, following our

assumption in Section 4.1, borrowers who receive a prediction of L type from the intermediary for

a lender would not apply to that lender. Thus, borrowers who fall under the Column 2 in Figure
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3 would not apply to Lender 1; those who fall in the Row 2 or Row 4 in Figure 3 would not apply

to Lender 2. Hence, the only relevant borrowers for Lender 1 are the ones who fall under Column

1; the only relevant borrowers for Lender 2 are those who fall in Row 1. We define the following

sets to capture the borrowers in Column 1 and/or Row 1 of Figure 3 for ease of explanation.

A1
hh = {k ∈ A|Y 1

k,b = H ∧ Y 2
k,c = H}

A2
hh = {k ∈ A|Y 1

k,b = H ∧ Y 2
k,c = H ∧ Y 2

k,b = H}

A1
hl = {k ∈ A|Y 1

k,b = H ∧ Y 2
k,c = L}

A2
lh = {k ∈ A|Y 1

k,b = L ∧ Y 2
k,c = H ∧ Y 2

k,b = H}

Specifically, A1
hh denotes the set of borrowers who are predicted as H type by the intermediary

for Lender 2 and are predicted as H type by Lender 1. A2
hh denotes the set of borrowers who are

predicted as H type by both lenders and are predicted as H type by the intermediary for Lender

2. These are the common segment for Lender 1 and Lender 2 respectively since borrowers in these

sets do not have a preference between the two lenders. In Figure 3, the cells (Row 1, Column 1)

and (Row 3, Column 1) together constitute A1
hh, the cell (Row 1, Column 1) corresponds to A2

hh.

A1
hl denotes the set of borrowers who are predicted as L type by the intermediary for Lender 2 and

are predicted as H type by Lender 1. This is the captive segment for Lender 1 since the borrowers

in this segment will always apply to Lender 1. A2
lh denotes the set of borrowers who are predicted

as L type by Lender 1 and are predicted as H type by Lender 2 and by the intermediary for Lender

2. In Figure 3, the cells (Row 2, Column 1) and (Row 4, Column 1) together constitute A1
hl, and

the cell (Row 1, Column 2) corresponds to A2
lh.

Again, Nk
xy denotes the number of borrowers, and V k

xy denotes the fraction of H type borrowers

in set Akxy where x, y ∈ {h, l} and k ∈ {1, 2}. Lenders set interest rates, b1 and b2 simultaneously

to compete. As before, a pure strategy equilibrium in interest rates does not exist. We study

the mixed strategy equilibrium. We use the CDFs F1(b) and F2(b) to characterize Lender 1’s

(revealing lender) and Lender 2’s (non-revealing lender) pricing strategies respectively. The lenders’

equilibrium strategies are summarized in Lemma 3; the proof can be found in Appendix B.4.

Lemma 3 The CDF for the revealing lender’s equilibrium pricing strategy in b is

F1(b) =


0 if b < b

bN2
hhV

2
hh+bN2

lhV
2
lh−k2+N2

hhV
2
hh−N

2
hh+N2

lhV
2
lh−N

2
lh

N2
hh(bV

2
hh+V 2

hh−1)
if b ≤ b < b

1 if b ≥ b

The CDF for the non-revealing lender’s equilibrium pricing strategy in b is
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F2(b) =


0 if b < b

bN1
hhV

1
hh+bN1

hlV
1
hl−k1+N1

hhV
1
hh−N

1
hh+N1

hlV
1
hl−N

1
hl

N1
hh(bV

1
hh+V 1

hh−1)
if b ≤ b < b

1 if b ≥ b

The equilibrium payoffs to the revealing lender and the non-revealing lender are

Π1
nr = k1

Π2
nr = k2

where


k1 = N1

hl

(
bV 1
hl + V 1

hl − 1
)

k2 = (b(N2
hhN

1
hlV

2
hhV

1
hl +N1

hlN
2
lhV

1
hlV

2
lh) +N1

hhN
2
hh(V 2

hh − V 1
hh)−N1

hhN
2
lh(−V 1

hh + V 2
lh)

+N2
hhN

1
hlV

2
hhV

1
hl −N2

hhN
1
hlV

1
hl +N1

hlN
2
lhV

1
hlV

2
lh −N1

hlN
2
lhV

1
hl)/(N

1
hhV

1
hh +N1

hlV
1
hl)

N1
hh = Pb

2Pcθ + Pbθ (−Pb + 1) (−Pc + 1) + Pb (−Pb + 1) (−Pc + 1) (−θ + 1)

+Pc(−Pb + 1)2 (−θ + 1)

N2
hh = Pb

2Pcθ + Pc(−Pb + 1)2 (−θ + 1)

N1
hl = Pb

2θ (−Pc + 1) + PbPcθ (−Pb + 1) + PbPc (−Pb + 1) (−θ + 1)

+(−Pb + 1)2 (−Pc + 1) (−θ + 1)

N2
lh = PbPcθ (−Pb + 1) + PbPc (−Pb + 1) (−θ + 1)

V 1
hh = Pb

2Pcθ+Pbθ(−Pb+1)(−Pc+1)

Pb
2Pcθ+Pbθ(−Pb+1)(−Pc+1)+Pb(−Pb+1)(−Pc+1)(−θ+1)+Pc(−Pb+1)2(−θ+1)

V 2
hh = Pb

2Pcθ

Pb
2Pcθ+Pc(−Pb+1)2(−θ+1)

V 1
hl = Pb

2θ(−Pc+1)+PbPcθ(−Pb+1)

Pb
2θ(−Pc+1)+PbPcθ(−Pb+1)+PbPc(−Pb+1)(−θ+1)+(−Pb+1)2(−Pc+1)(−θ+1)

V 2
lh = PbPcθ(−Pb+1)

PbPcθ(−Pb+1)+PbPc(−Pb+1)(−θ+1)

Mathematically, we have F1(b) ≤ F2(b), ∀b ∈ [0, b]. This implies that the revealing lender sets

a higher interest rate than the non-revealing lender in general. Figure 4 illustrates the CDFs of

the two lenders’ strategies in the N-R case, together with the lenders’ equilibrium strategies in the

N-N and R-R cases. As is shown in the figure, the interest rate set in the R-R case is the lowest,

indicating intense competition between the two lenders in that case.

It is easy to see that V 1
hh < V 2

hh, which confirms that the common segment for the revealing

lender is riskier than the common segment for the non-revealing lender. In contrast, the revealing
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Figure 4: Lenders’ equilibrium pricing strategies in each sub-game; Pb = 0.8, Pc = 0.8, θ = 0.7

lender faces a less risky captive segment as the fraction of H type borrowers are higher in its captive

segment. In other words, V 1
hl > V 2

lh. The reason is that the signal from the revealing lender is more

precise compared to the signal from the non-revealing lender as the intermediary’s noise is added

to the latter.

While both lenders still prefer their common segment to the their captive segment, the revealing

lender’s preference for its common segment over its captive segment is not as strong as the non-

revealing lender’s. As a result, the revealing lender is more willing to sacrifice the common segment

and chooses a higher interest rate to extract greater surplus from its captive segment. In contrast,

the non-revealing lender sets a lower interest rate, which allows it to capture more borrowers in its

common segment while sacrificing surplus from its captive segment.

Figure 5 shows the equilibrium payoff breakdown by different borrower segments for each lender

in the N-R case. Since the lenders are playing mixed strategies, we plot the profit breakdown by

lender (revealing vs non-revealing) and segment as a function of b when the competing lender is

using the equilibrium mixed strategy. Both solid lines decrease in b, because setting a higher b will

make the focal lender’s product less competitive in the common segment (A1
hh or A2

hh). In contrast,

the dashed lines increase in b, because borrowers in segments A1
hl or A2

lh are captive and the profit

generated from them is proportional to b. Notice that compared with the non-revealing lender, a

larger portion of the revealing lender’s profit is generated from its captive segment.

It is not difficult to check that Π2
nr

Π1
nr

= Pc ≤ 1. This means that the revealing lender gets a higher

profit in equilibrium than the non-revealing lender, and the difference in the two lenders’ profits

decreases in Pc. Note that (1− Pc) is the amount of noise that the intermediary introduces to the

approval prediction borrowers receive. When a lender reveals its algorithm, it removes this noise
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Figure 5: Lenders’ equilibrium profit break down in the N-R case

Note: The solid lines represent the profit generated from common segment borrowers; the dashed lines represent the
profit generated from captive segment borrowers.

from the process. The revealing lender benefits from the market expansion effect as it attracts more

qualified borrowers to apply who would not have applied if the algorithm is not revealed due to

the errors in intermediary’s predictions. At the same time, the non-revealing lender benefits from

an information advantage as it gets a more accurate signal from the revealing lender’s algorithm.

Both the market expansion and information advantage effects are a function of (1−Pc). However,

compared to the marginal effect of market expansion, the marginal effect of information advantage

increases at a slower rate with (1− Pc). Hence, by revealing the algorithm, the revealing lender is

in a more advantageous position relative to the non-revealing lender.

4.5 Analysis: Revealing Stage

4.5.1 The Payoff Matrix and the Algorithm Revealing Equilibrium

So far, we have solved all possible sub-games after Stage 2. We now solve for the equilibrium in

Stage 1. The “revealing game” that the two lenders are facing in Stage 1 is shown in the following

table,

Lender 2

Not Reveal Reveal

Lender 1
Not Reveal (Πnn,Πnn) (Π1

nr,Π
2
nr)

Reveal (Π2
nr,Π

1
nr) (Πrr,Πrr)

where Πrr, Πnn, Π1
nr and Π2

nr denote lenders’ equilibrium payoffs under different sub-games, as

defined in Lemmas 1, 2, and 3.
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We prove that Π1
nr > Πnn always holds (see Appendix B.5), which rules out N-N as an equilib-

rium outcome. One of the lenders in the N-N case always has the incentive to deviate and reveal

its algorithm to benefit from the market expansion effect.

The relationship between Π2
nr and Πrr depends upon Pb: Π2

nr > Πrr when Pb is relatively high.

The non-revealing lender in the N-R case would choose to stay in the N-R or switch to R-R case

based on the balance among three forces (a) market expansion (b) information advantage, and

(c) competition. By revealing the algorithm, the non-revealing lender can benefit from market

expansion but will lose the “information” advantage it holds over its competitor. As we discussed

earlier, the market expansion effect from revealing the algorithm dominates the information advan-

tage effect from not revealing. However, in the R-R case, the lenders become symmetric and the

competition on the interest rate is intensified. The intensity of the competition on the interest rate

is determined by the relative profitability of the common segment over the captive segment which

is directly proportional to Pb. When Pb is low, even when both lenders reveal their algorithms, the

competition is not very intense. Hence, the non-revealing lender in the N-R case would choose to

switch to the R-R case and benefit from the market expansion effect when Pb is low. In contrast,

when Pb is high, it would prefer not to reveal its algorithm and stick to the N-R case to avoid

intense competition.

We summarize the algorithm revealing equilibrium in Stage 1 in the following proposition.

Proposition 1 The algorithm revealing equilibrium is determined by lenders’ algorithm’s accuracy,

Pb, as follows:

1. If lenders’ algorithm’s accuracy Pb is sufficiently low, i.e., Pb < P 0
b , then Π2

nr < Πrr, and the

revealing equilibrium is symmetric such that both lenders choose to reveal the algorithm to the in-

termediary.

2. If lenders’ algorithm’s accuracy Pb is sufficiently high, i.e., Pb ≥ P 0
b , then Π2

nr ≥ Πrr, and the

revealing equilibrium is asymmetric such that only one lender chooses to reveal the algorithm to the

intermediary.

The threshold P 0
b above is a function of Pc and θ:

P 0
b =

bPcθ + bθ + 3Pcθ − 3Pc + θ − 1 +
√

∆

4bPcθ + 2bθ + 4Pcθ − 4Pc + 2θ − 2

∆ =b
2
Pc

2θ2 + 2b
2
Pcθ

2 + b
2
θ2 − 2bPc

2θ2 + 2bPc
2θ + 4bPcθ

2 − 4bPcθ + 2bθ2

− 2bθ + Pc
2θ2 − 2Pc

2θ + Pc
2 + 2Pcθ

2 − 4Pcθ + 2Pc + θ2 − 2θ + 1

The proof can be found in Appendix B.5. The dependence of revealing equilibrium on Pb and Pc
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is shown in figure 6, which graphically illustrates Proposition 1. It can be seen that an asymmetric

equilibrium will occur unless the accuracy of lenders’ algorithm is very low.

Figure 6: Algorithm revealing equilibrium depending on Pb and Pc when θ = 0.8, b = 0.5

Figure 7 further illustrates the equilibrium profits under the pricing equilibrium in the three

possible sub-games resulting from the two lenders’ revealing decisions (i.e., R-R, N-N, and N-R).

SPNE profits are denoted in black, and off-equilibrium profits are denoted in gray. By deviating

from the symmetric N-N case to the N-R case, the revealing lender is able to get a much higher

profit due to the market expansion effect. On the other hand, the non-revealing lender does not

become worse off because of the softened competition on b.

4.5.2 Effects of Pc and θ on revealing SPNE

The effects of Pc and θ on SPNE are summarized in Proposition 2.

Proposition 2 P 0
b decreases with Pc and increases with θ.

The proof can be found in Appendix B.6. Proposition 2 states that the threshold that Pb needs

to exceed for asymmetric revealing equilibrium to be sustained decreases with Pc. When Pc is high,

the noise introduced by the intermediary is very small. As a result, the market expansion effect

that a lender can benefit from and the information advantage it loses from revealing the algorithm

are both small. At the same time, there is little difference in the intensity of competition between

the N-R case and the R-R case. However, if the non-revealing lender in the N-R case reveals its

algorithm and switches to the R-R case, as Pc increases, the positive market expansion effect from

revealing would decrease at a faster rate than the rate at which the negative effects of the intensified

competition and the loss of information advantage would decrease. Therefore, when Pc is large,

the non-revealing lender in the N-R case would prefer not to switch to the R-R case by revealing

its algorithm even at some relatively low values of Pb.
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Figure 7: Equilibrium profits in each algorithm revealing sub-games when Pc = 0.7, θ = 0.8, b = 0.5

Note. SPNE profits are denoted in black, and off-equilibrium profits are denoted in gray. When Pb < P 0
b (the vertical

line in the figure), the SPNE is both lenders revealing their algorithms in Stage 1 and setting interest rates according
to Lemma 1 in Stage 2, and the corresponding equilibrium profits for the two lenders are represented by the black
portion of the “R-R case” line. When Pb ≥ P 0

b , the SPNE is one lender revealing its algorithm and the other not
revealing its algorithm in Stage 1, and the revealing and non-revealing lenders setting interest rates according to
Lemma 3. The corresponding equilibrium profit for the revealing lender is represented by the black portion of the
“N-R case Lender 1” line and that for the non-revealing lender is represented by the black portion of the “N-R case
Lender 2” line.

Moreover, when θ, the portion of H type borrowers in the population, increases, the threshold

on Pb that is required to sustain asymmetric equilibrium increases. In comparison to the intensity

of competition, the market expansion effect is affected at a greater rate by θ. As a result, a higher

value of θ encourages the non-revealing lender in the N-R case to reveal its algorithm and switch

to the R-R case to take advantage of the market expansion effect.

4.6 Borrower Surplus and Social Welfare

We next examine borrowers’ surplus under each sub-game resulting from lenders’ decisions on algo-

rithm revelation in Stage 1. We proceed by first calculating total surplus of lenders and borrowers,

and then subtracting the lenders’ equilibrium payoff. Since the interest rates set by the lender do

not directly affect total surplus,22 our approach to calculate borrower surplus avoids integration

over b. Previously, we have divided borrowers into several segments according to the lenders’ and

intermediary’s predictions. Some segments of borrowers never apply to either of the lenders, and

22The reason is as follows. Borrowers who do not apply to either lender generate no surplus to the society; those
who apply and are rejected each generate a negative surplus of −m; those who apply and are approved also generates
a fixed amount of surplus, which depends on their type but not on b, because the interest payments are surplus
transferred from borrowers to lenders. Under Assumption 2, the number of borrowers in each of the segments is not
affected by b either, because as long as a borrower receives at least one positive (“H”) prediction, she will apply to
one lender regardless of the interest rate.
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those borrowers generate zero total surplus to the system. Some segments of borrowers will apply

but will not be approved, and those borrowers generate a negative surplus because there is a cost

associated with being rejected. Other segments of borrowers will apply and will be approved, and

whether they generate a positive total surplus to the system or not depends on their types.

The comparison of total surplus and borrower surplus in the three algorithm revealing cases is

summarized in Proposition 3.

Proposition 3 Both total surplus and borrower surplus are the highest in the R-R case, followed

by the asymmetric case, and the lowest in the N-N case. That is, TSrr > TSnr > TSnn, and

CSrr > CSnr > CSnn.

The full derivation and expressions of total surplus and borrower surplus can be found in

Appendix B.7. Here we focus on discussing the comparison between the N-R case and the R-R

case because these are the two cases that can be sustained in the equilibrium. We first look at

why TSrr > TSnr > TSnn. In the R-R case, there is no uncertainty faced by borrowers regarding

their approval odds. In contrast, borrowers face the most uncertainty about their approval odds

in the N-N case. The uncertainty regarding approval odds leads borrowers to make sub-optimal

application decisions, e.g. borrowers who will be approved choose not to apply whereas borrowers

who will be rejected choose to apply. The number of such non-optimal decisions is the lowest in the

R-R case and highest in the N-N case. These non-optimal decisions create negative surplus to the

society. A borrower who applies but gets rejected will create −m social surplus, and a borrower

who would be approved but does not apply will result in an opportunity cost to social surplus with

a size of θ(Mh −m) + (1− θ)(Ml −m− 1).23 Hence, social surplus is the highest in the R-R case,

followed by the N-R case and then the N-N case.

As for borrower surplus, when comparing CSnr with CSrr, notice that (1) the number of

borrowers who are approved in the R-R case is larger than in the N-R case; (2) the number of

borrowers who are rejected in the R-R case is smaller than in the N-R case; (3) the interest

rate set in the R-R case is on average lower than in the N-R case. (This is the case because

F rr(b) > F1(b), F rr(b) > F2(b),∀b ∈ [0, b].) In other words, in the R-R case, more borrowers are

approved, fewer borrowers are rejected, and the interest rates set by the lenders are lower compared

with the N-R case. Consequently, borrowers’ welfare is higher in the R-R case than in the N-R

23This value is always positive. Rewrite the expression as [θb+(1−θ)(b−1)]+[θ(Mh−m−b)+(1−θ)(Ml−m−b)].
The first part is greater than 0 under Assumption 1, and the second part is greater than 0 following the first inequality
in Assumption 2. To see the logic of the latter, recall that the first inequality of Assumption 2 ensures that borrowers
will always follow the intermediary’s predictions to apply to lenders regardless of the interest rate and revealing
decisions the lenders make. Imagine that in the R-R case, a borrower receives a positive type prediction from Lender
1 but a negative prediction from Lender 2. Her expected utility from applying to Lender 1 is exactly the same as the
second part of the expression above, and this utility has to be greater than 0 to make it consistent with Assumption
2
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case. The borrower surplus in the N-N case, CSnn, is the smallest among the three. The reason

is that there are a large number of borrowers who make sub-optimal applying decisions because of

the large market friction. Even when one lender sets a higher interest rate in the N-R case than it

would do in the N-N case, moving from N-N to N-R will still benefit borrowers.

5 Mandating Algorithm Revelation

As discussed previously, both borrower surplus and social surplus are the highest in the R-R case.

However, when Pc is high, only one lender would want to reveal the algorithm. Does it imply

that mandatory disclosure could be socially desirable from the policy makers’ perspective? In this

extension, we tackle this question by showing the other side of the story – the effect of mandatory

revealing on lenders’ incentive to improve their algorithms. While in the previous analysis we

assume that the lenders’ algorithm accuracy Pb is exogenous, in this extension we consider it a

decision that lenders have to make prior to Stage 1 in the current model.

In this extension, we study two scenarios: a mandatory scenario where lenders are required to

reveal the algorithms, and a voluntary scenario where such requirements are absent. We will focus

on the parameter range where the two lenders make asymmetry revealing decisions voluntarily,

because outside of this range, mandatory revealing is redundant. In other words, we assume that

Pb > P 0
b , where P 0

b is defined in Proposition 1. Under this assumption, both lenders will reveal their

algorithms when revealing is mandatory, while only one lender will reveal its algorithm without such

a policy intervention. We assume there are advances in technology that could help lenders increase

their algorithms’ accuracy from Pb to P ∗b without any cost, and study lenders’ incentives to take on

this opportunity in both scenarios. Intuitively, it may appear that a lender should always improve

its algorithm’s accuracy when such improvement is cost-less. However, we will demonstrate that is

not the case. Below, we start with the mandatory scenario. The lenders’ equilibrium strategies in

upgrading their algorithms in this scenario are summarized in Proposition 4.

Proposition 4 In the mandatory revealing scenario, there is a unique symmetric mix-strategy

equilibrium in upgrading screening algorithms, where each lender chooses to upgrade its algorithm

with probability PM = 1−Pb
P ∗b

.

The proof of Proposition 4 can be found in Appendix B.8. An interesting observation is that

PM decreases in Pb and P ∗b , which means that when lenders’ algorithms’ accuracy is relatively high,

lenders will have little incentive to further increase it. The reason is that when lenders’ algorithms’

accuracy is high, competition is especially intense in the “both reveal” case. Any further increase

in algorithms’ accuracy would make the common segment even more profitable compared to the
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captive segment thus further intensifying the competition on the interest rate, which would drive

down lenders’ equilibrium profits. Since the mandatory revealing policy is only relevant in the case

where Pb is relatively large (i.e., Pb > P 0
b ), lenders will have less incentive to improve their screening

algorithms if revealing is made mandatory.

We next consider the voluntary scenario. The lenders’ equilibrium strategies in upgrading their

algorithm in the voluntary scenario are shown in Proposition 5

Proposition 5 In the voluntary revealing scenario, the revealing lender always chooses to upgrade

its algorithm, while the non-revealing lender chooses to upgrade the algorithm if θ ≤ θ0 or Pc ≤ P 0
c ,

where 
θ0 =

2PbP
∗
b Pc−PbP

∗
b −2PbPc+Pb+2P ∗b

2Pc−P ∗b
2−3P ∗b Pc+2P ∗b +Pc

−2PbPc+Pb+P
∗
b
2(2Pc−1)(b+1)+P ∗b ((b+1)(2PbPc−Pb−Pc)+2−2Pc)+Pc

P 0
c =

Pb+P
∗
b

2Pb+2P ∗b −1

The proof of Proposition 5 can be found in Appendix B.9. Proposition 5 says that in the

voluntary scenario, both lenders will adopt the higher accuracy algorithm unless both θ and Pc

are high, in which case only the revealing lender chooses to upgrade the algorithm. We show in

the appendix that upgrading the algorithm is a dominant strategy for the revealing lender. The

intuition is as follows: In Section 4, we have shown that in the N-R case, the non-revealing lender

could incorporate a more accurate signal from its rival than the revealing lender, thus it chooses to

focus on capturing the common segment while the revealing lender chooses to focus on its captive

segment, softening the competition. If the revealing lender increases its algorithm’s accuracy, the

signal that the non-revealing lender could incorporate will be even more accurate, and on the other

hand the revealing lender can also better screen borrowers in its captive segment, and therefore,

competition will be further softened. By contrast, the non-revealing lender has to consider the

relative effect sizes of improved screening ability and increased competition due to an increase in

its algorithm’s accuracy. When θ ≤ θ0, the market is risky in the sense that there is large fraction of

L type borrowers, and there are significant benefits from a better screening ability. Similarly, when

Pc ≤ P 0
c , the direct impact of an increase in the accuracy of the non-revealing lender’s algorithm

on intensifying the competition is fairly weak. As a result, the non-revealing lender would choose

to increase its algorithm’s accuracy only when θ ≤ θ0 or Pc ≤ P 0
c .

Our analysis above suggests that the implications of policy makers’ decision on regulating

algorithm revelation is not as straightforward as it appears intuitively. Since increasing the accuracy

of screening algorithms can help allocate fund to more creditworthy borrowers, failing to do so may

potentially hurt borrower surplus. The following proposition specifies a sufficient condition under

which mandatory algorithm revealing will hurt consumer surplus.
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Proposition 6 Mandatory algorithm revealing will hurt borrower surplus if θ ≤ θ0 and Pc > Pc,

Where θ0 is defined in Proposition 5, and

Pc = −B+
√
B2−4AC
2A

A = 2bP ∗b
2θ − bP ∗b θ + 2P ∗b

2θ − 2P ∗b
2 − 3P ∗b θ + 3P ∗b + θ − 1

B = mθ + (P ∗b
2 − Pb)

(
bθ + 3m− 2Mhθ + 2Mlθ − 2Ml − θ + 1

)
+ P ∗b (m− 2mθ)

C = 1−Mhθ + 2Pb
2
(
−bθ − θ + 1

)
+ 2Pb

(
bθ + θ − 1

)
− θ

+P ∗b
2
(
−bθ − 2m+Mhθ −Mlθ +Ml

)
+ 2P ∗b (m+Mlθ −Ml)

+ (−m+Mhθ −Mlθ +Ml + θ − 1) (Pb
4 − 2Pb

3 + Pb
2)/P ∗b

2

Proposition 6 suggests that mandating revealing of screening algorithms could hurt consumer

surplus when Pc is high but θ is low. First, the condition on θ is to ensure that the lenders

have an incentive to increase accuracy in the N-R case, according to Proposition 5. The intuition

behind the Pc related condition will become clear once we layout the upside and downside of such

a mandatory revealing policy. On the upside, mandatory revealing will reduce market friction by

eliminating borrowers’ uncertainties. On the downside, it will impede lenders from adopting more

accurate algorithms. The benefit from the upside is decreasing in Pc since the benefit of revealing

the algorithm is low if the intermediary can already provide accurate odds of approval. Moreover,

the loss due to the downside is increasing in Pc: when predictions the intermediary provides are

more accurate (i.e., Pc is higher), borrowers sub-optimal applying behavior is reduced, and the

benefit of lenders adopting more advanced algorithms becomes larger since any improvement in

screening accuracy will directly improve the chances that credit is allocated to the more deserving

H type borrowers.

6 Conclusions

6.1 Summary of Results

The use of ML algorithms and data driven decision making by financial lenders seems win-win for

both the lenders and the borrowers – lenders are able to better screen borrowers for their credit

worthiness and deserving borrowers are more likely to get approved for credit (Fu et al., 2021).

However, as lenders get better at screening the borrowers, the later continue to face considerable

uncertainty in their chances of getting approved for credit by a lender (Citron and Pasquale, 2014,

Fu et al., 2020).

In this paper, we investigate forces that affect lenders’ decisions to reveal their algorithms to the

intermediary or provide approval odds to the borrowers. We provide explanation for the empirical

observation that only a few lenders have revealed their algorithms to intermediaries or provide
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approval odds via pre-approval tools to borrowers. We show that lenders use asymmetric revealing

of approval odds strategically to soften the competition. Asymmetric revealing allows lenders

to focus on different segments of borrowers. Our results show that asymmetric revealing of the

algorithms occurs when the lenders’ algorithms’ accuracy is high. Further, asymmetric revealing

equilibrium can also be sustained with a relatively lower algorithmic accuracy when the accuracy

of the intermediary’s algorithm is high or the market is very risky due to the presence of a large

portion of borrowers with low credit worthiness.

The asymmetric revealing equilibrium leads to endogenous product differentiation. The reveal-

ing lender focuses more on its captive segment and on average charges a higher interest rate. In

contrast, the non-revealing lender focuses more on the common segment and charges a low interest

rate. The revealing lender receives a greater payoff compared to the non-revealing lender.

The borrower surplus and total surplus are the highest in the case where both lenders reveal

their algorithms and the lowest in the case where neither lender reveals its algorithm. We further

find that a mandatory policy that requires lenders to provide accurate approval odds generated by

their algorithms may not necessarily improve borrower surplus. This is because lenders have less

incentive to improve their algorithms’ accuracy when algorithm revelation is mandated compared

to when it is voluntary.

6.2 Managerial Implications

Our analysis provides a number of insights that may guide practice and future research on algorithm

revelation (or provision of approval odds more specifically) in the financial lending scenario. First,

if algorithm revelation by a lender can intensify competition in one case, but soften competition in

another, it implies that provision of personalized approval odds is a complex decision. Symmetric

revelation always intensifies the competition whereas asymmetric revelation softens it. However,

besides competition lenders should also consider the potential market expansion effect. While

making these revelation decisions it is important for us to ascertain the mediators for these two

type of effects. Our model suggests that these mediators are most likely related to the accuracy of

the lenders’ algorithms, the accuracy of the intermediary’s algorithm and the composition of the

market (i.e. fraction of H type borrowers). Second, our results show that at least one lender should

always provide approval odds to the borrowers under all conditions. And both lenders should choose

to reveal their algorithm to the intermediary when specific conditions are met. Given the increasing

calls for algorithmic transparency, the fact that market forces can lead to partial transparency by

at least one lender and in some cases by both the lenders is quite promising.

Third, the competitive implications of algorithm revelation to intermediary by both lenders

are more severe in the markets where lenders’ algorithms are quite accurate. For example, in
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these markets if both the lenders provide approval odds, the borrowers would face no uncertainty.

Further, due to high accuracy of the lenders’ algorithm, the common segment would be even more

profitable to the lenders as the chances of type II errors in this segment are minimal when both

lenders provide approval odds. Whereas the captive segment would become less profitable as the

chances of type II errors in this segment increase when both lenders provide approval odds. Hence,

if both lenders provide approval odds, they could get into self debilitating competition on interest

rates. As a result, a lender should avoid providing personalized approval odds if its competitor is

already providing them when their algorithms accuracy is high.

Fourth, the prior belief of the borrowers regarding their approval odds can moderate the com-

petitive and market expansion effects of provision of approval odds by lenders. In our model, the

prior belief of the borrowers is captured by the accuracy of the intermediary’s algorithm. When the

intermediary’s algorithm is inaccurate, many borrowers would have inaccurate beliefs and make

sub-optimal decisions. The market expansion effect from provision of approval odds is stronger

when the intermediary’s algorithm is less accurate. Hence, both the lenders can be better off by re-

vealing their algorithms when intermediary’s accuracy is low even when they have relatively higher

algorithm accuracy. Fifth, when the market is composed of many H type borrowers, any sub-

optimal decision by borrowers due to uncertainty regarding approval odds is costlier to the lenders.

Hence, both the lenders should reveal their algorithm to the intermediary when the fraction of H

type borrowers in the market is high even for relatively high accuracy of lenders’ algorithms.

Sixth, under conditions where only one lender should reveal its algorithm, our results show

that the revealing lender is better off than the non-revealing lender. Surprisingly, the revealing

lender is not better off at the cost of the non-revealing lender. The asymmetric revealing generates

asymmetry in both the captive and common segments faced by the two lenders. As a result,

they target different segment of borrowers softening the competition. Hence, when conditions for

asymmetric revealing equilibrium are met, a lender should take the opportunity to be the first

mover and reveal its algorithm if its competitor has not done so yet. At the same time, the non-

revealing lender should not worry that it will be hurt because of the asymmetric action of the

competing lender. This result highlights the role of asymmetric revelation as a new mechanism

for endogeneously creating product differentiation to soften competition among financial lenders

(Tirole and Jean, 1988).

Finally, financial products with similar non price features would be equally profitable to the

borrowers and, hence, one would think lenders would not be able to charge different prices for

their products. However, lenders’ algorithms’ accuracy allows lender differentiation. When the

lenders’ algorithms are less accurate they will incorrectly classify many borrowers. On first look

this may appear all bad for the lenders. However, there is a positive aspect to low accuracy. When
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lender algorithms are less accurate, they would differ in their predictions. Different approval odds

then lead to borrowers having relatively different preferences for the lenders. The difference in

preferences for the two lenders by different customers leads to softening of competition. While

there are advantages to an accurate algorithm (less loss due to misclassification), lenders should

carefully consider its impact on competition as well.

6.3 Implications for Public Policy

Our analysis suggests that from a social-welfare perspective, lenders’ algorithm revealing behavior

increases the efficiency of credit markets, because it helps borrowers avoid non-optimal applying

decisions which are socially wasteful. However, this does not mean that policy makers should

always compel lenders to reveal pre-approval odds or the screening algorithms to intermediaries.

Policy makers are suggested to understand the strategic reasons as to why lenders do not want to

reveal such information, and be aware of the potential impact of mandatory algorithmic revealing

on lender competition. Our analysis shows that when lenders are mandated to reveal their algo-

rithm, they will have less incentive to invest in screening technologies. When policy makers are

considering regulations on compulsory information revealing, they are suggested to consider how

such regulations may affect subsequent competition and to keep in mind that such regulations may

reduce lenders’ incentive to invest in algorithmic screening technologies, which in the long term

may not help allocate credit to more creditworthy borrowers. Our analysis suggests that in general,

when the market is relatively risky and the intermediary’s algorithm is relatively accurate, policy

makers should be especially concerned with mandatory algorithmic revealing since in those cases,

the benefit of reduced market friction will be overshadowed by the loss due to lack of adoption of

better screening technologies by lenders.

6.4 Limitations

Our paper attempts to model the most important forces in the algorithmic lending and revelation

context. This allows us to provide a deep and robust analysis on the algorithm revelation strategies.

However, there are many forces and strategic actions which we do not capture which open up

interesting avenues for future researchers as the algorithmic lending market further evolves. First,

we model the intermediary as non-strategic. It is reasonable because even the largest intermediaries

at present have limited market power to influence a large lender’s decision. However, as these

intermediaries gain market power they could strategically influence lenders’ algorithm revelation

decisions. Second, we do not model algorithmic gaming by borrowers. Borrowers only get to

know whether they will be approved or not by a lender, as a result gaming of the algorithm by

borrowers via changing their attributes is going to be very limited in scope if any. Future research
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can consider how algorithm revelation strategies would change if algorithm revelation could lead

to gaming by borrowers which may hurt the predictive performance of the algorithm. Third, we

ignore other avenues through which borrowers could apply to a lender. Intermediary platforms are

only one such avenue. Borrowers can also directly apply to lenders through their websites. This

is important because, lenders do not have to pay the intermediary any fee if a borrower applies

directly to the lender but have to pay a fee if the borrower applies via an intermediary. It would

be interesting to investigate how algorithm revelation strategies of lenders would change if one

considers these multiple avenues through which borrowers could apply.

Finally, the financial lending market is quite complex with a large number of competitors. For

simplicity we only consider a duopoly competition. However, as the emergence of common and

captive segments is a phenomenon that could be observed even in the presence of more than two

lenders in the market, we are inclined to believe that the findings from our model are easily gener-

alizable to scenarios where oligopolistic competition is more prevalent as compared to duopolistic

competition.

Despite the limitations discussed earlier, we believe our paper provides an insightful and robust

analysis on algorithmic lending and specifically on the algorithm revelation strategies of lenders.

In conclusion, our paper is among the first to examine the effect of competition between lenders on

their decision to reveal approval odds to borrowers. We provide novel explanations for the observed

asymmetric information revealing behavior in credit markets and recognize a new dimension of

strategy to leverage competition, which has not been captured by previous models of strategic

information revealing and lender competition.
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A Notation Summary

Notation Meaning

Pb Accuracy of lenders’ algorithms
Pc Accuracy of intermediary’s algorithm
θ Percentage of H type borrowers in the population
m Borrowers’ cost of applying
Mh Utility of being approved for a H type borrower
Ml Utility of being approved for a L type borrower
b Interest rate set by the lenders

b Maximum interest rate can be set by the lenders
Y i
k,b Lender i’s prediction of borrower k’s type

Y i
k,c Intermediary’s guess of lender i’s prediction of borrower k’s type

N rr
hh(Nnn

hh ) The number of borrowers in a lender’s common segment in the
R-R (N-N) case

N rr
hl (N

nn
hl ) The number of borrowers in a lender’s captive segment in the

R-R (N-N) case
V rr
hh (V nn

hh ) The percentage of H type borrowers in a lender’s common segment
in the R-R (N-N) case

V rr
hl (V nn

hl ) The percentage of H type borrowers in a lender’s captive segment
in the R-R (N-N) case

N1
hh(N2

hh) The number of borrowers in Lender 1(2)’s common segment in the
N-R case

N1
hl(N

2
lh) The number of borrowers in Lender 1(2)’s captive segment in the

N-R case
V 1
hh(V 1

hh) The percentage of H type borrowers in Lender 1(2)’s common segment
in the N-R case

V 1
hl(V

2
lh) The percentage of H type borrowers in Lender 1(2)’s captive segment

in the N-R case

Table 1: Notation summary

B Mathematical Appendix

B.1 Derivation of Conditions in Assumption 2

This assumption is to ensure borrowers will always follow the intermediary platform’s suggestion.

Specifically, if a borrower is predicted as H type by the intermediary for either lender, she will

apply to the lender even under the least favorable conditions (i.e., the interest rate is b and the

other lender predicts her as L type24). We want the above argument to be true for all possible

24The two lenders’ algorithms are independent given her type but not independent without conditioning on her
type. That is, without knowing her true type, the prediction from the other lender (or intermediary) will influence
her posterior belief on whether she will be approved or not by the focal lender.
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combinations of predictions that a borrower may receive in all possible sub-games. In the R-R sub-

game, this is satisfied trivially, since being predicted as H type by a lender will ensure a borrower

being approved the lender. In the N-R sub-game, the extra information from the other lender’s (or

the intermediary’s) predictions is stronger than that in the N-N sub-game, since in the N-N sub-

game all signals are from the intermediary’s noisy predictions. This means if the above argument

holds for the N-R case, it must also hold for the N-N case. Consequently, we only need to make

sure that in the N-R case, if a borrower receives H from the non-revealing lender, she will apply

to this lender even when the revealing lender predicts her as L type.25 According to numbers of

borrowers in each segments shown in Figure 3, given that a borrower is predicted as H type by

the intermediary for the non-revealing lender and as L type by the revealing lender, her beliefs are

specified as follows: with probability Pb(1−Pb)Pc
D she is a H type and will be approved thus gets

utility Mh−b−m, with probability PcPb(1−Pb)
D she is a L type and will be approved thus gets utility

Ml− b−m, with probability (1−Pb)2(1−Pc)+Pb2(1−Pc)
D she will be rejected and gets utility −m, where

D = Pb(1− Pb)Pc + PcPb(1− Pb) + (1− Pb)2(1− Pc) + Pb
2(1− Pc) is a common denominator that

ensures all probabilities add up to one. By calculating the expected utility from the probabilities

above and making it greater than 0, we can get the first condition in Assumption 2.

As for the second condition, the purpose is to ensure that if a borrower is predicted as L type

by the intermediary for a lender, she will not apply to this lender even under the most favorable

conditions (i.e., the interest rate is as low as 0 and the other lender predicts her as H type. Following

a similar procedure as that for the first condition, we can calculate the expected utility and set it

to be smaller than 0, which gives us the second condition. The details are omitted here.

B.2 Proof of Lemma 1

Let F rr(b) denote the CDF of both lender’s equilibrium mixed strategy for the pricing decision.

Facing Lender 2’s mixed strategy characterized by F rr(b), Lender 1’s expected profit is:

E[Πrr
1 ](b) =(1− F rr(b))(N rr

hh(V rr
hhb− 1 + V rr

hh ) +N rr
hl (V

rr
hl b− 1 + V rr

hl ))

+ F rr(N rr
hl (V

rr
hl b− 1 + V rr

hl ))
(B.1)

The first line in Equation (B.1) corresponds to the case where Lender 1 sets a lower interest rate b

than Lender 2 and thus Lender 1 gets segments Arrhh and Arrhl . The second line corresponds to the

case where Lender 1 sets a higher b than Lender 2 and thus Lender 1 gets only segment Arrhl .

To make sure that Lender 1 is using the same mixed strategy characterized by F rr(b), Lender

25In fact borrowers do not know which lender has revealed its algorithm, and therefore, the above argument will
form a sufficient but not necessary condition under which borrowers will always follow the intermediary’s suggestions.
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1 has to be indifferent in setting any b on the support of F rr(b), mathematically,

E[Πrr
1 ](b) = k (B.2)

where k is a constant. The maximum b that can be set by the lenders is b, i.e.,

F rr(b) = 1 (B.3)

Using Equations (B.1), (B.2), and (B.3), we can solve for F rr(b). The mixed strategy equilibrium

in this sub-game is as shown in Lemma 1.

B.3 Proof of Lemma 2

Facing Lender 2’s pricing strategy characterized by the CDF Fnn(b), Lender 1’s expected profit is:

E[Π1](b) =(1− Fnn(b))(Nnn
hh (V nn

hh b− (1− V nn
hh ))b) +Nnn

hl (V nn
hl b− (1− V nn

hl )))

+ Fnn(b)Nnn
hl (V nn

hl b− (1− V nn
hl ))

(B.4)

The first line corresponds to the case where Lender 1 sets a lower b than Lender 2, and thus

Lender 1 gets segments Annhh and Annhl . The second line corresponds to the case where Lender 1 sets

a higher b than Lender 2, and thus Lender 1 only gets the Annhl segment.

In a symmetric equilibrium, Lender 1 is using the same mixed strategy characterized by Fnn(b),

therefore, Lender 1 has to be indifferent in setting any b on the support of Fnn(b). Mathematically,

E[Π1](b) = k (B.5)

where k is a constant. The maximum b that can be set by the lenders is b, i.e.,

Fnn(b) = 1 (B.6)

Combining Equations (B.4), (B.5), and (B.6), we can solve for Fnn(b). The mixed strategy

equilibrium in this sub-game is summarized in Lemma 2.

B.4 Proof of Lemma 3

If b1 > b2, Lender 1 will only get the A1
hl segment, and Lender 2 will get the A2

hh and A2
lh segments.

If b1 < b2, Lender 1 will get the A1
hh and A1

hl segments, and Lender 2 will get only the A2
lh segment

of borrowers. We do not need to consider the case where b1 = b2 since this will happen with
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probability 0 under the mixed strategy setting.26

Lender 1’s expected payoff can be written as:

E[Πnr
1 ] = (1− F2(b))

(
N1
hh

(
V 1
hhb− 1 + V 1

hh

)
+N1

hl

(
V 1
hlb− 1 + V 1

hl

))
+ F2(b)N1

hl

(
V 1
hlb− 1 + V 1

hl

) (B.7)

Lender 2’ expected payoff can be written as:

E[Πnr
2 ] = (1− F1(b))

(
N2
hh

(
V 2
hhb− 1 + V 2

hh

)
+N2

lh

(
V 2
lhb− 1 + V 2

lh

)
)
)

+ F1(b)N2
lh

(
V 2
lhb− 1 + V 2

lh

) (B.8)

Facing the competitor’s strategy, Lender 1 (Lender 2) should be indifferent in any b in the

support of F1(b) and F2(b). Mathematically:

E[Πnr
1 ](b) = k1 (B.9)

E[Πnr
2 ](b) = k2 (B.10)

Additionally, consider the maximum b that can be set by both firm is b, we have

F1(b) = 1 (B.11)

F2(b) = 1 (B.12)

Another condition that need to be satisfied is that the CDF F1(b) should be greater than or

equal to 0 in any region where a positive probability is assigned to F2(b). Similarly, the CDF

F2(b) should be greater than or equal to 0 in any region where a positive probability is assigned to

F1(b). The logic is that setting b1 = min(b2) ensures that Lender 1 gets the common segment with

probability 1, so Lender 1 has no incentive to further reduce b1. Similarly, setting b2 = min(b1)

ensures that Lender 2 gets the common segment with probability 1 so Lender 2 has no incentive to

further reduce b2. This requires:

F1(b) = 0 (B.13)

F2(b) = 0 (B.14)

Solving Equations (B.7) - (B.14), we get each lender’s equilibrium strategy in the N-R sub-game.

The mixed strategy equilibrium in this sub-game is summarized in Lemma 3.

26It can be shown that there is no mass point on b2’s distribution.
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B.5 Proof of Proposition 1

We first prove that Π1
nr > Πnn. Expand and rewrite Πnn and Π1

nr as

Πnn = −Pc
(
bPbθ (Pb (Pc − 1) + Pc (Pb − 1)) + PbPc (Pb − 1) (θ − 1) + (Pb − 1)2 (Pc − 1) (θ − 1)

)
Π1
nr = −bPbθ (Pb (Pc − 1) + Pc (Pb − 1))− PbPc (Pb − 1) (θ − 1)− (Pb − 1)2 (Pc − 1) (θ − 1)

It is straightforward to see that Π1
nr > PcΠ

1
nr = Πnn.

We next prove that Π2
nr > Πrr if and only if Pb > P 0

b : Expand and rewrite the two terms as:

Π2
nr = −Pc

(
bPbθ (Pb (Pc − 1) + Pc (Pb − 1)) + PbPc (Pb − 1) (θ − 1) + (Pb − 1)2 (Pc − 1) (θ − 1)

)
Πrr = Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
We first prove that the two functions, Π2

nr and Πrr cross at most once. Take the first derivative

w.r.t. Pb. The goal is to show ∂Π2
nr

∂Pb
≥ ∂Πrr

∂Pb
for any value of Pb.

∂Π2
nr

∂Pb
= Pc

(
−4bPbPcθ + 2bPbθ + bPcθ − 4PbPcθ + 4PbPc + 2Pbθ − 2Pb + 3Pcθ − 3Pc − 2θ + 2

)
∂Πrr

∂Pb
= −2bPbθ + bθ − 2Pbθ + 2Pb + θ − 1

Since it is difficult to compare these two values directly, we go one step further and take the second

derivative.
∂2Π2

nr

∂P 2
b

= 2Pc
(
−2bPcθ + bθ − 2Pcθ + 2Pc + θ − 1

)
∂2Πrr

∂P 2
b

= −2bθ − 2θ + 2

We next prove that ∂2Π2
nr

∂P 2
b
≤ ∂2Πrr

∂P 2
b

: rewrite ∂2Π2
nr

∂P 2
b

= 2Pc(2Pc−1)(1−θ−b), so we have ∂2Π2
nr

∂P 2
b
/∂

2Πrr
∂P 2

b
=

Pc(2Pc − 1) ≤ 1. Now since ∂2Π2
nr

∂P 2
b
≤ ∂2Πrr

∂P 2
b

, we only need to show ∂Π2
nr

∂Pb
≥ ∂Πrr

∂Pb
holds at the right

most point, that is, ∂Π2
nr

∂Pb
|Pb=1 ≤ ∂Πrr

∂Pb
|Pb=1. Expand and rewrite these two terms:

∂Π2
nr

∂Pb
|Pb=1 = Pc(−3bPcθ + 2bθ − Pcθ + Pc)

∂Πrr

∂Pb
|Pb=1 = −bθ − θ + 1

The latter is invariant in Pc while the former is a quadratic function of Pc. Specifically, the

former first increases and then decreases in Pc, and therefore, the minimum value is reached at
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either Pc = 0.5 or at Pc = 1 Since ∂Π2
nr

∂Pb
|Pb=1,Pc=0.5 = (bθ − θ + 1)/4 > 0 > ∂Π2

nr
∂Pb
|Pb=1 and

∂Π2
nr

∂Pb
|Pb=1,Pc=1 = −2bθ − 2θ + 2 = ∂Π2

nr
∂Pb
|Pb=1, ∂Π2

nr
∂Pb
|Pb=1 ≥ ∂Π2

nr
∂Pb
|Pb=1 for any value of Pc.

Combine the facts that ∂2Π2
nr

∂P 2
b
≤ ∂2Πrr

∂P 2
b

and ∂Π2
nr

∂Pb
|Pb=1 ≥ ∂Π2

nr
∂Pb
|Pb=1, we get ∂Π2

nr
∂Pb

≥ ∂Π2
nr

∂Pb
, ∀Pb.

This is sufficient to ensure that the two curves intersect at most once. We then plug the expression

of P 0
b into Π2

nr and Πrr and get

Π2
nr|Pb=P 0

b
= Πrr|Pb=P 0

b

Thus we have Π2
nr > Πrr if and only if Pb > P 0

b

B.6 Proof of Proposition 2

We first prove that
∂P 0

b
∂Pc

< 0. Rewrite the expression of P 0
b by collecting the Pc terms as:

P 0
b =

Pc
(
bθ + 3θ − 3

)
+ bθ + θ − 1 +

√
Pc

2
(
bθ − θ + 1

)2
+ 2Pc

(
bθ + θ − 1

)2
+
(
bθ + θ − 1

)2
4Pc

(
bθ + θ − 1

)
+ 2

(
bθ + θ − 1

)
(B.15)

Let x = bθ − θ + 1 and y = bθ + θ − 1. Rewrite Equation B.15 as:

P 0
b =

Pc(2y−x)
y + 1 +

√
P 2
c x

2

y2
+ 2Pc + 1

2(2Pc + 1)
(B.16)

Now take the derivative w.r.t. Pc. Note that Pc is not contained in either x or y.

∂P 0
b

∂Pc
=
x2Pc − x

√
x2Pc

2 + 2y2Pc + y2 − 2y2Pc − y2

2y
√
x2Pc

2 + 2y2Pc + y2 (2Pc + 1)2
(B.17)

Also notice that according to Assumption 1, y > 0. Furthermore, x = y + 2(1 − θ) > y > 0.

It is easy to see that the denominator of the right-hand site expression in Equation B.17 is greater

than 0. Rewrite the numerator as x(
√
x2P 2

c −
√
x2Pc

2 + 2y2Pc + y2) + y2(−2Pc − 1), and we can

see both terms in the numerator are negative. Thus, we have
∂P 0

b
∂Pc

< 0.

We next prove that
∂P 0

b
∂θ > 0. Rewrite the expression of P 0

b while collecting the terms involving

θ as

P 0
b =

θ(bPc + b+ 3Pc + 1)− 3Pc − 1 +
√

∆′

θ(2bPc + b+ 2Pc + 1)− 2Pc − 1
(B.18)

where ∆′ = θ2(b
2
(P 2

c + 2Pc + 1) + 2b(−P 2
c + 2Pc + 1) + (P 2

c + 2Pc + 1)) + θ(−2b(−P 2
c + 2Pc + 1)−

2(P 2
c + 2Pc + 1)) + P 2

c + 2Pc + 1. Rewrite ∆′ as

∆′ = (θbPc − θPc + Pc)
2 + (2Pc + 1)(bθ + θ − 1)2 (B.19)
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Note that for the second term ∂((2Pc+1)(bθ+θ−1)2)
∂θ = 2(2Pc + 1)(bθ + θ − 1)(b+ 1) > 0 according

to Assumption 1. Combine the fact that the partial derivative of the denominator in Equation B.18

w.r.t. θ equals 2bPc + b+ 2Pc + 1, which is greater than 0, we have

∂P 0
b

∂θ
=
∂ θ(bPc+b+3Pc+1)−3Pc−1+

√
∆′

θ(2bPc+b+2Pc+1)−2Pc−1

∂θ

>
∂
θ(bPc+b+3Pc+1)−3Pc−1+

√
(θbPc−θPc+Pc)2

θ(2bPc+b+2Pc+1)−2Pc−1

∂θ

=
∂ θ(bPc+b+3Pc+1)−3Pc−1+(θbPc−θPc+Pc)

θ(2bPc+b+2Pc+1)−2Pc−1

∂θ

=
∂ θ(2bPc+b+2Pc+1)−2Pc−1

θ(2bPc+b+2Pc+1)−2Pc−1

∂θ

= 0

Thus
∂P 0

b
∂θ > 0.

B.7 Proof of Proposition 3

In this proof, we first compare total surplus in each of the sub-games resulting from the two

lenders’ algorithm revealing decisions, and then subtract the lenders’ equilibrium payoff from the

total surplus and compare the borrower (consumer) surplus. We calculate the total surplus by

adding together the social surplus generated by borrowers from different segments. When a H type

borrower gets the loan, a (TSh = Mh −m) amount of social welfare is generated. When a L type

borrower gets the loan, a (TSl = Ml−m− 1) amount of social welfare is generated (i.e., the lender

loses 1, the loan amount, while the borrower loses m, the negative impact on the credit score).

When a borrower is rejected, a −m amount of social surplus is generated. To calculate the social

surplus generated in each sub-game, we need to find out the number of H type borrowers who are

approved (NH,a), the number of L type borrowers who are approved (NL,a), and the number of

borrowers who are rejected (Nr). We do not care about the borrowers who do not apply since they

will generate 0 surplus to the social welfare. For the R-R case, there are 4 segments of borrowers:

HH HL LH and LL. Borrowers in the HH HL and LH segments will apply and will be approved.

Thus we have N rr
H,a = N rr

hhV
rr
hh + 2N rr

hl V
rr
hl , N rr

L,a = N rr
hh(1 − V rr

hh ) + 2N rr
hl (1 − V rr

hl ), and N rr
r = 0.

(We use the superscript rr, nn, and nr to denote the R-R, N-N, and N-R case respectively.) The

total surplus generated in the R-R case is

TSrr = N rr
H,aTSh +N rr

L,aTSl (B.20)
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Similarly, in the N-N case, we have

TSnn = Nnn
H,aTSh +Nnn

L,aTSl +Nnn
r (−m) (B.21)

where

Nnn
H,a = PbPcθ (−2PbPc + Pb + Pc + 1)

Nnn
L,a = Pc (Pb − 1) (θ − 1) (2PbPc − Pb (Pc − 1)− Pc (Pb − 1) + 2 (Pb − 1) (Pc − 1))

N rr
r = Pb

2(−3Pc
2 + 5Pc − 2) + 4PbPcθ(Pc − 1) + PbPc(Pc − 3) + 2Pb − 2Pcθ(Pc − 1)

In the N-R case, we have

TSnn = Nnr
H,aTSh +Nnr

L,aTSl +Nnr
r (−m) (B.22)

where

Nnr
H,a = Pbθ (−PbPc + Pc + 1)

Nnr
L,a = (Pb − 1) (θ − 1) (2PbPc − Pb (Pc − 1)− Pc (Pb − 1) + (Pb − 1) (Pc − 1))

Nnr
r = (Pc − 1)

(
Pb

2 (θ − 1)− θ(Pb − 1)2
)

Next, we show that TSrr > TSnr > TSnn. The comparison is straightforward but cumbersome

and thus the details are omitted here. The intuition is as follows. Note that Nnn
r > Nnr

r > N rr
r

and Nnn
H,a + Nnn

L,a < Nnr
H,a + Nnr

L,a < N rr
H,a + N rr

L,a. In other words, in the N-N case, the number

of borrowers who are approved is the lowest and the number of borrowers who are rejected is the

highest. In the R-R case, the number of borrowers who are approved is the highest and the number

of borrowers who are rejected is the lowest. The N-R case is between the two extremes. Since

rejected borrowers will generate a negative social surplus, and accepted borrowers on average will

generate a positive social surplus, we have TSrr > TSnr > TSnn.

We next subtract the lenders’ equilibrium profits from the social surplus to compute borrower

surplus:

CSrr = TSrr − 2Πrr (B.23)

CSnn = TSnn − 2Πnn (B.24)

CSnr = TSnr −Π1
nr −Π1

nr (B.25)

where TSrr, TSnn, and TSnr are defined in Equations B.20, B.21, and B.22 respectively. Πrr, Πnn,

and Πnr are defined in Lemma 1, 2, and 3 respectively. We can plug the expression of total surplus
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and lenders’ profit into these expressions and compare them, and we will get CSrr > CSnr > CSnn.

Again, the comparison is straightforward but cumbersome, so we omitted the details here. The

intuition of CSrr > CSnr is simple: (1) The number of borrowers who are approved in the R-R

case is larger than in the N-R case. (2) F rr(b) > F1(b) and F rr(b) > F2(b), which means on average

borrowers face lower interest rates in the R-R case than in the N-R case. Points (1) and (2) above

ensure that borrowers’ welfare in the R-R case is higher than in the N-R case. We next discuss why

CSnr > CSnn. Comparing the difference in total surplus and the difference in lenders’ profit in the

N-N and N-R cases, we have TSnr−TSnn > Π1
nr+Π2

nr−2Πnn = Π1
nr−Πnn (Note that Π2

nr = Πnn),

which means the lenders only take a portion of the increased surplus, and the remaining is left to

the borrowers.

B.8 Proof of Proposition 4

We consider sub-games resulting from the lenders’ decisions on algorithm upgrade (NU -NU ,NU -

U ,U -NU ,U -U), where NU stands for “not upgrade” and the algorithm’s accuracy stays at Pb, and

U stands for “upgrade” and the algorithm’s accuracy rises to P ∗b . The equilibrium payoff in the

two symmetric cases, NU -NU and U -U , have already been calculated and shown in Lemma 1.

Since the two lenders’ decisions on revealing is symmetric under mandatory revealing, the lenders’

equilibrium payoff in NU -U case mirrors the payoff in the U -NU case. Compared with the NU -

NU case, in the NU -U case, the only things that will change are the number of borrowers in

each segment. Similar to the analysis in Appendix B.2, we can find the lenders’ equilibrium payoff

when their algorithms’ accuracy are Pb and P ∗b respectively. The payoff matrix of the “algorithm

upgrading” game is shown in the following table:

Lender 2

Not Upgrade Upgrade

Lender 1
Not Upgrade (Πrr

NU -NU ,Π
rr
NU-NU ) (Πrr

NU-U ,Π
rr
U -NU )

Upgrade (Πrr
U -NU ,Π

rr
NU-U ) (Πrr

U -U ,Π
rr
U -U )

Where

Πrr
NU-NU = Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
Πrr
U -U = P ∗b

(
−bP ∗b θ + bθ − P ∗b θ + P ∗b + θ − 1

)
Πrr
NU-U = Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
Πrr
U -NU = P ∗b

(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
We focus on the symmetric mixed strategy equilibrium and assume both lenders choose to upgrade

with probability PM . The following equation must hold to ensure both lenders are indifferent
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between upgrading or not:

(1− PM )ΠNU-NU + PMΠ1
NU -U = (1− PM )Π2

NU-U + PMΠU -U (B.26)

Solve Equation B.26 and we get PM = 1−Pb
P ∗b

.

B.9 Proof of Proposition 5

Assume in this case Lender 1 reveals its algorithm but Lender 2 does not. We solve for lenders equi-

librium payoff in sub-games followed by every combination of the two lenders’ upgrading decisions,

the payoff matrix of the game is shown in the following table:

Lender 2

Not Upgrade Upgrade

Lender 1
Not Upgrade (Πnr1

NU-NU ,Π
nr2
NU−NU ) (Πnr1

NU-U ,Π
nr2
U−NU )

Upgrade (Πnr1
U -NU ,Π

nr2
NU−U ) (Πnr1

U -U ,Π
nr2
U−U )

where

Πnr1
NU-NU = −bPbθ (Pb (Pc − 1) + Pc (Pb − 1))− (Pb + Pc − 1) (θ − 1) (Pb − 1)

Πnr2
NU-NU = Pc

(
Pb

2
(
−2bPcθ + bθ − 2Pcθ + 2Pc + θ − 1

)
+ Pb

(
bPcθ + (θ − 1)(3Pc − 2)

)
−Pcθ + Pc + θ − 1

Πnr1
U -NU = −bP ∗b θ (Pb (Pc − 1) + Pc (Pb − 1))− PbPc (P ∗b − 1) (θ − 1)

− (Pb − 1) (P ∗b − 1) (Pc − 1) (θ − 1)

Πnr2
NU-U = Pc(Pb

2
(
P ∗b
(
−2bPcθ + bθ − 2Pcθ + 2Pc + θ − 1

)
+ 2Pcθ − 2Pc − θ + 1

)
+Pb

(
P ∗b
(
bPcθ + Pcθ − Pc − θ + 1

)
− Pcθ + Pc

)
+ P ∗b (θ − 1))/P ∗b

Πnr1
NU-U = −bPbθ (P ∗b (Pc − 1) + Pc (P ∗b − 1))− P ∗b Pc (Pb − 1) (θ − 1)

− (Pb − 1) (P ∗b − 1) (Pc − 1) (θ − 1)

Πnr2
U -NU = Pc(Pb

(
P ∗b

2
(
−2bPcθ + bθ + (θ − 1)(1− 2Pc)

)
+ P ∗b

(
bPcθ + (θ − 1)(Pc − 1)

)
+θ − 1 + P ∗b

2 (2Pcθ − 2Pc − θ + 1) + P ∗b (−Pcθ + Pc))/Pb

Πnr1
U -U = −bP ∗b θ (P ∗b (Pc − 1) + Pc (P ∗b − 1))− P ∗b Pc (P ∗b − 1) (θ − 1)

−(P ∗b − 1)2 (Pc − 1) (θ − 1)

Πnr2
U -U = Pc

(
−2bP ∗b

2Pcθ + bP ∗b
2θ + bP ∗b Pcθ − 2P ∗b

2Pcθ + 2P ∗b
2Pc + P ∗b

2θ − P ∗b
2

+3P ∗b Pcθ − 3P ∗b Pc − 2P ∗b θ + 2P ∗b − Pcθ + Pc + θ − 1

We first prove that Lender 1 has a dominate strategy “U” by showing Πnr1
U -NU > Πnr1

NU-NU and
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Πnr1
U -U −Πnr1

NU-U .

Πnr1
U -NU −Πnr1

NU-NU = (Pb − P ∗b )
(
bθ (Pb (Pc − 1) + Pc (Pb − 1)) + (θ − 1) (PbPc + (Pb − 1) (Pc − 1))

)
Since Pb < P ∗b , Pb < 1, Pc < 1 and θ < 1, Πnr1

U -NU −Πnr1
NU-NU > 0. Further,

Πnr1
U -U −Πnr1

NU-U = (Pb − P ∗b ) (bθ (P ∗b (Pc − 1) + Pc (P ∗b − 1)) + (θ − 1) (P ∗b Pc + (P ∗b − 1) (Pc − 1)))

Again, since Pb < P ∗b , P ∗b < 1, Pc < 1 and θ < 1, Πnr1
U -U −Πnr1

NU-U > 0.

As Lender 1 always chooses to upgrade the algorithm, Lender 2 makes the upgrading decision by

comparing Πnr2
NU-U with Πnr2

U -U . Let δ = Πnr2
U -U−Πnr2

NU-U . It is easy to check that δ is linearly decreasing

in θ. Since δ|θ=θ0 , δ > 0 when θ < θ0. Notice that θ0 is decreasing in Pc, and θ0|Pc=P 0
c

= 1, which

means θ0 > 1 when Pc < P 0
c . Thus θ < θ0 will always hold.

B.10 Proof of Proposition 6

In the mandatory revealing scenario, both lenders choose to upgrade the algorithm with probability

PM , that is, with probability P 2
M both lenders’ algorithms’ accuracy will be P ∗b , with probability

(1 − PM )2 both lenders’ algorithms’ accuracy will be Pb, and with probability 2PM (1 − PM ) one

lender’s accuracy will be Pb and the other’s will be P ∗b . Borrower surplus is thus the expected total

surplus minus the lenders’ expected profit, as shown in Equation B.27.

CSrr∗ =(1− PM )2 (TSrrPb,Pb − 2Πrr
Pb,Pb

)
+ PM

2
(
TSrrP ∗b ,P

∗
b
− 2Πrr

P ∗b ,P
∗
b

)
+ 2PM (1− PM )

(
TSrrPb,P ∗b

−Πrr
Pb,Pb

−Πrr
Pb,P

∗
b

) (B.27)

where

TSrrPb,Pb = Pb (2− Pb) (−θ (m−Mh) + (θ − 1) (m−Ml + 1))

TSrrPb,P ∗b
= (θ (m−Mh)− (θ − 1) (m−Ml + 1)) (−PbP ∗b + Pb (P ∗b − 1) + P ∗b (Pb − 1))

TSrrP ∗b ,P
∗
b

= P ∗b (2− P ∗b ) (−θ (m−Mh) + (θ − 1) (m−Ml + 1))

Πrr
Pb,Pb

= Pb
(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
Πrr
Pb,P

∗
b

= P ∗b
(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
Πrr
P ∗b ,P

∗
b

= P ∗b
(
−bP ∗b θ + bθ − P ∗b θ + P ∗b + θ − 1

)
In the voluntary scenario, when θ < θ0, both lenders upgrade their algorithms to an accuracy of

P ∗b . Thus borrower surplus can be calculated as:
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CSnr∗ = TSnrP ∗b ,P
∗
b
−Πnr1

P ∗b ,P
∗
b
−Πnr2

P ∗b ,P
∗
b

(B.28)

where

TSnrP ∗b ,P
∗
b

= −m (Pc − 1)
(
P ∗b

2 (θ − 1)− θ(P ∗b − 1)2
)

+P ∗b θ (m−Mh) (−P ∗b Pc + P ∗b (Pc − 1) + 2Pc (P ∗b − 1))

− (P ∗b − 1) (θ − 1) (m−Ml + 1) (2P ∗b Pc − Pc (P ∗b − 1) + (P ∗b − 1) (Pc − 1))

Πnr1
P ∗b ,P

∗
b

= −bP ∗b θ (P ∗b (Pc − 1) + Pc (P ∗b − 1))− P ∗b Pc (P ∗b − 1) (θ − 1)

−(P ∗b − 1)2 (Pc − 1) (θ − 1)

Πnr2
P ∗b ,P

∗
b

= Pc
(
−2bP ∗b

2Pcθ + bP ∗b
2θ + bP ∗b Pcθ − 2P ∗b

2Pcθ + 2P ∗b
2Pc + P ∗b

2θ − P ∗b
2

+3P ∗b Pcθ − 3P ∗b Pc − 2P ∗b θ + 2P ∗b − Pcθ + Pc + θ − 1

Define δ = CSrr∗ −CSnr∗. Combining and rearranging terms, we can see that δ is a quadratic

function in Pc: δ = AP 2
c + BPc + C, where A, B, and C are defined in Proposition 6. We can

then check that δ|Pc=0 = C < 0, and δ|Pc=1 = A + B + C > 0 in the parameter ranges defined in

Assumptions 1 and 2. Thus one of the roots of the quadratic function, P 0
c = −B+

√
B2−4AC
2A , must

be in range (0, 1). Thus δ > 0 if Pc > P 0
c .
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