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Abstract

Expected Utility requires that individuals never strictly prefer a convex mixture of
two lotteries over either of the two. However, recent experimental literature has found
that these “mixture effects” are pervasive. Decision theoretic models used to rationalize
such effects can broadly be split into three categories: 1) decision makers have a strict
preference for mixtures, 2) mixing is the realization of strict preferences with noise,
and 3) mixing is a representation of uncertainty over preferences. I develop a two-part
experiment to identify the dominant mechanism underlying mixture effects. I find
that less than 15% of observations are consistent with convex preferences, whereas
approximately 75% are consistent with stochastic choice. These findings have important
implications for policy development and behavioral welfare analysis when interpreting

stochastic choice data.
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1 Introduction

Decision making under risk is central to many economic choices. The canonical model
of expected utility (EU) provides a means of evaluating economic prospects when the
outcome is uncertain. Since the development of EU, many counter-examples have surfaced
to highlight the inefficacy of this model in simple decision making contexts. One of the
most notable is the Allais paradox (Allais, 1953), which demonstrates a frequent violation
of EU due to a preference for certain outcomes. While the Allais paradox demonstrates a
violation due to “certainty effects”, recently there has been a growing interest in exploring
another type of deviation from EU—“mixture effects”.

To demonstrate exactly how mixture effects violate EU, imagine that an individual
is faced with a choice between two lotteries and their 50-50 mixture. The independence
axiom of EU ensures that the utility of the mixture always falls between the utility of
the most preferred and the least preferred lottery. This implies that the 50-50 mixture is
never strictly preferred to both constituent lotteries. Yet, a growing literature has noted
that experimental subjects frequently express a preference for mixtures in their choice
data (Camerer and Ho, 1994; Butler and Loomes, 2011; Agranov and Ortoleva, 2017, 2020;
Feldman and Rehbeck, 2022). These data have been the focus of many new theoretical
models attempting to explain mixture effects with different psychological mechanisms
and policy implications. Importantly, existing experiments cannot distinguish between
these candidate theories, leaving a critical gap in the experimental literature. In this
manuscript, I develop a novel experiment designed to disentangle prominent explanations
of mixture effects. One of the three explanations emerges as the primary rationalization of
mixtures—stochastic choice. Evidence in favor of convex risk preferences and incomplete
preferences is present within the data but account for a small proportion of observations
when compared to stochastic choice. These findings suggest new ways for evaluating
evidence of mixture effects and the models proposed to rationalize them.

Section 2 provides an introduction to the literature documenting mixture effects.
Beginning with Mosteller and Nogee (1951), there is overwhelming evidence that mixture
effects are present within a variety of decision making environments. Given this fact, more
recent research explores whether a willingness to mix in one environment is correlated
with a willingness to mix in others (Agranov and Ortoleva, 2017; Feldman and Rehbeck,
2022). Studies of these different environments has generated interest in mixtures as objects
that can themselves be used to make inference about preferences. Section 2 discusses the
approaches that different studies have taken in order to do this.

The theoretical literature has responded to this evidence by exhibiting a sharp growth
in the number of rationalizing models. Section & introduces some prominent models have

have proved foundational to the way in which I interpret mixture effects. These models



are often based on similar theoretical foundations, such as a non-degenerate set of utility
functions, yet a deeper exploration uncovers some contrasting normative motivations behind
constructing mixtures. From these normative motivations I develop three explanations
designed to represent each, and give examples of specific models that sit within them. The
explanations are as follows; 1) individuals have convex preferences and therefore can have a
strict preference for mixtures, 2) mixing can be interpreted as a symptom of the interaction
between strict preferences and noise, and 3) mixing occurs as a result of uncertainty over
preferences. An analysis of previous experimental research reveals that current data is
not equipped to disentangle each explanation. This motivates the necessity for a two-part
experimental design where individuals can mix over lotteries, then mix again over one of the
original lotteries and the mixture that they previously constructed. This simple addition
to otherwise standard experimental protocol provides, to a large extent, the necessary
identification.

Section 4 develops a theoretical framework and states the predictions for each expla-
nation within the context of our experiment. The two-part design allows us to directly
observe how individuals interact with the mixtures that they previously generated. To our
knowledge, this aspect of the design has never been used before and is fundamental for
differentiating between explanations. I finish by highlighting the difficulty of comparing
each explanation in an unbiased manner and introduce my solution—a bootstrapping
technique that compares each explanation against what I refer to as the “naive” and
“empirical” null hypotheses.

Section 5 describes the experimental design in greater detail. Data from a total of 900
participants over three treatments were collected using an online sample. Each treatment
is designed to mimic a natural environment in which mixing might occur, for example
selecting once over a convex choice set or selecting multiple times over a binary choice
set. Having preference uncertainty as an explanation creates additional challenges for
incentivization because there is no choice prediction when individuals cannot construct a
preference. This necessitates an opt-out aspect of the design, which allows participants
to completely skip the mixture generating process in exchange for a pre-specified, yet
undisclosed substitute lottery. This non-specification decision acts as a proxy for preference
uncertainty.

In Section 61 state the results of the experiment. The main findings are as follows.
Across all treatments, approximately 10% to 15% of Part 1 answers are left unspecified,
meaning that individuals overwhelmingly prefer to generate mixtures themselves. Of those
that are specified, approximately 50% are degenerate mixtures, meaning that they place
full weight on one of the lotteries. Half of all specified Part I answers therefore result

in non-degenerate mixtures, which is substantially more than predicted by EU. Of those



specified and non-degenerate observations, one explanation is dominant in explaining
the data—stochastic choice. Between 75% and 80% of observations are consistent with
stochastic choice, which is significantly more than one would expect from an individual
choosing mixture weights uniformly at random. Analysis at the individual level suggests
that this is a stable trait within decision makers. On the other hand, convex preferences
appear to represent a very small number of observations, and this value is significantly
less than the null hypotheses. Evidence of preference uncertainty is also present, but
contributes very little to the overall proportion of decisions within our dataset.

Section 7 concludes with a discussion of the findings. Overall, mixtures tend to result
from stochastic processes more so than a strict preference for mixtures. Therefore, providing
individuals with mixtures generated by aggregating individual decisions is not likely to
provide as much welfare as giving individuals the option that they choose most frequently.
I discuss the implications of these findings for policy development and behavioral welfare

analysis more generally.

2 Evidence of Mixture Effects

Mixture effects have been studied throughout the experimental literature dating back to
Mosteller and Nogee (1951), who were the first to note that the empirical frequency of
accepting a bet is positively related to the certainty equivalent of that bet.

More recent literature has found that mixing occurs frequently in both repeated choice
environments and over convex menus. Agranov and Ortoleva (2017) relate randomization
over repeated decisions with models such as Cautious Stochastic Choice (Cerreia-Vioglio
et al., 2019), Random Utility (Gul and Pesendorfer, 2006) and incompleteness, finding
that 71% of participants choose different lotteries in the same question when repeats are
consecutive, and 90% choose different lotteries when repeats are separated. Agranov et al.
(2023) find that randomization is an individual trait when the same question is repeated
consecutively—17% of participants never mix as opposed to 52% who always mix. The
study most similar to ours is that of Feldman and Rehbeck (2022). They directly relate
repeated discrete choice tasks with decisions over convex menus. 94.4% of participants have
some preference for mixing, and choices from repeated discrete choice tasks are positively
correlated with choices from the convex menus. A follow up experiment tests for mixing
behavior over two monetary payoffs, which results in a dominance relation (Rehbeck and
Stelnicki, 2024). Even with dominated options, they find that more than 70% of created
mixtures put a strictly positive probability on the lower monetary payoff. Their studies
differ in the sense that they do not have the two part design in which decision makers
can directly interact with their previously generated mixtures. Agranov and Ortoleva

(2020) test willingness to mix with a novel adaptation of a multiple price list that allows



individuals to randomize between options at each row of the list. Over 75% of subjects
report non-degenerate mixtures in at least two thirds of questions Agranov and Ortoleva
(2022) provides an overview of studies related to revealed preferences for randomization.
The following sections will discuss how preference uncertainty may lead to mixture
effects. A specific branch of research relates preference uncertainty to the “preference
reversal phenomenon”, which suggests that preferences appear contradictory, or mixed,
when measured in different domains, for example binary choices versus valuations (But-
ler and Loomes, 2007, 2011). It’s pervasiveness has long since been documented, and
summarized in Seidl (2002). Cettolin and Riedl (2019) more explicitly relate preferences
under uncertainty and randomization, finding that approximately 16% of participants
demonstrate behavior consistent with both incomplete preferences and a preference for
randomization. Experimental research that relates mixing with incomplete preferences
often require non-traditional forms of incentivization. The benefits and drawbacks of these

designs are discussed in Section 5.4.

3 Preferences for Mixtures and Rationalizing Theories

Consider a finite set of outcomes X C Z where |X| = N. A lottery ¢ can be defined as
a probability vector ¢ := (pf,...,p%) on X. A (binary) menu of two lotteries ¢ and ¢ is
denoted {¢,¢'}. Decision makers are permitted to construct mixtures over each binary

menu where a mixture over menu {¢, ¢’} is represented by
(a;£,€) = (ap] + (1 — a)pf N+ (1= a)ply)
mla; £, : apy )Py, -, OPN Q)PN

for € [0,1]. Let the weight placed on lottery ¢ by the decision maker over the menu
{£,¢'} be denoted as a*(¢,¢'). m*(¢,¢') is used as an abbreviation for m(a*(¢,¢'); ¢,¢').

In addition, each decision maker has a utility function, U, over the finite lottery space.
At this stage there are no further assumptions placed on the characteristics of U, other
than that it is well defined for each finite lottery. All other characteristics will be stated

within the explanations below.

3.1 Potential Rationalizing Theories

A number of theoretical models have been developed to explain how these mixtures are
chosen by decision makers. Each of these models imply different normative motivations
underlying the mixture generation process, and therefore impose conditions on how decision
makers should interact with menus in order to generate m*(¢,¢'). In what follows, the
models are categorized into three explanations, each of which represents a different type of

normative motivation behind generating mixtures.



3.1.1 Individuals strictly prefer mixtures

Allowing individuals to construct mixtures between alternatives increases the menu from
the two original alternatives to the entire convex hull of the two. Under this explanation,
selecting a mixture represents choosing a mixture that is strictly preferred to all other

available mixtures. Formally, there is a mixture weight, a*, such that

a* (0,0 = argmgx{U(m(a;é, ) im(as6,0) € Co({£,0'})}

An example of a model that falls into this explanation is Cautious Expected Utility
(CEU; Cerreia-Vioglio et al. 2015, 2019). CEU functions on the premise that decision
makers have a non-singular set of utility functions. When a decision is to be made between
alternatives, the value of each alternative is defined as the lowest certainty equivalent given
by all of the utility functions. The chosen alternative is then the alternative with the
highest value. By comparing across the set of utility functions, CEU allows preferences to
be convex, meaning that a mixture between two lotteries can be strictly preferred to either
of the two original lotteries, unlike traditional EU.

Although this formulation is much more general than suggested by CEU, it highlights
the key mechanism behind mixture effects within this explanation class. Namely, the
mixture is generated because it is the most preferred option from the set of all possible

mixtures.

3.1.2 Mixtures reflect choice proportions of strict preferences with noise

The second interpretation is that decision makers are considering their preference over
the two initial lotteries, yet the mixture weights represent a stochastic choice proportion
over the lotteries. For example, suppose that the decision maker prefers ¢ from the menu
{¢,¢'} in the sense that U(¢) > U(¢'). In the absence of noise, one would expect the
decision maker to choose lottery £ over ¢ for all decisions made over the menu. However,
an introduction of noise could result in the noisy utility of ¢ occasionally being larger than
that of ¢, and therefore ¢ is chosen on some occasions. Let I' : R? — R represent utility
of lottery £ after the interaction with noise €. These ‘random’ utilities are used to make
decisions over menus in the stochastic environment. With this notation we can begin to

develop our predictions for stochastic choice':

!Depending on which assumptions are applied to the distribution of noise, this setup provides the same

predictions as a Moderate Utility Model from He and Natenzon (2024), where P(¢,{(,¢'}) = F (%)A

P(¢,{¢,0'}) represents the probability of picking £ from the menu {¢, £’} and d(¢, {') represents some distance
metric on the finite support lottery space.



o (0, 0) =P [I(U(),e) > TUL), e0)]

A prominent model within this explanation category is the Random Utility Model
(RUM; McFadden (1972); Gul and Pesendorfer (2006)). RUM again assumes a non-singular
set of utility functions. The difference between this model and CEU is the way in which
these utility functions manifest themselves when a decision is made. Instead of valuing
alternatives according to the minimum certainty equivalent across all utility functions, RUM
takes a stochastic draw from the set of utility functions. Alternatives are then evaluated
according to that utility function and the alternative providing the highest utility is chosen.
Each choice is associated with its own stochastic draw of a utility function, meaning that
even decisions from identical menus can result in different alternatives being chosen. In
this scenario, a mixture can be considered as representing the relative proportions with
which each alternative in the menu is chosen. This explanation captures mixture effects
as a less deliberate act, and more as an illustration of preference strength over the two

original alternatives.

3.1.3 Mixtures represent uncertainty over preferences

Very few models make choice predictions when the preference ordering over alternatives is
uncertain. An extreme of this scenario is when a preference is incomplete.? Given that
there are no predictions as to what a rational decision maker would choose given that the
preferred alternative is unknown, selecting a non-degenerate mixture across options should
be no more nor less likely than a degenerate mixture (Danan, 2010). Put simply, it seems
natural that mixture effects could be a symptom of individuals expressing their uncertainty
over which alternative they prefer.

One of the most popular models from the decision theory literature allowing for incom-
plete preferences is the Multi Utility Model (MUM; Evren (2008); Evren and Ok (2011)).
Again, MUM requires a set of utility functions, and again the difference in predictions over
choices occurs as a result of the way in which these utility functions are used to generate a
choice. In this model, a preference exists between two alternatives if and only if all the
utility functions agree on the relative ranking between the two options. If for example all
but one prefer ¢ to ¢’ but one prefers ¢ to £, then the relation between ¢ and ¢ is deemed
incomplete. When this occurs there is no prediction as to what the individual is going to

choose.

ZIncompleteness” within the decision theory literature refers to a scenario where neither alternative is

weakly preferred to the other in the underlying preference relation.



It is worth noting that these explanations are not exhaustive of all theoretical mod-
els. For example, models that rely on stochastic consideration, such as (Manzini and
Mariotti, 2014) incorporate neither convex preferences, nor do they have noise directly in-
teracting with preference. However, limiting the focus to binary menus in this study implies
that one of the two lotteries must not be considered in order for stochastic consideration
to be driving the mixture effects. This doesn’t seem particularly likely. Drift Diffusion
Models (Ratcliff, 1978) and models of bounded rationality are similarly not captured by

any of the three explanations.

4 Differentiating Candidate Rationalizations

All of the explanations above provide a rationalization for mixture effects. However, they
each suggest different mechanisms underlying the mixture generating process. Current
data are unable to dissect these mechanisms, meaning that they cannot shed light on
which mechanism is primarily responsible. It is important to understand which of these
explanations is the driving force due to the different normative objectives that they each
represent. Any policy maker attempting to maximize welfare needs to understand such
objectives in order to adequately do so. Given these facts, I introduce a minor addition
to the traditional empirical approach for identifying mixture effects—allowing individuals
to construct mixtures as they do in standard designs and then allowing them to directly
interact with those mixtures in future menus. Specifically, consider a design in two parts
where Part 1 features menus of the form {¢,¢'} and Part 2 features menus of the form
{¢,m*(¢,0')}, where m*(¢,¢') is the mixture generated from the Part I question. Using
this design, one can observe how individuals mix over previously generated mixtures when
confronted with them in future questions. The relative weights assigned to these mixtures
in Part 2 menus allow us to disentangle each of the explanations.

Figure 1 depicts the predictions of the first two explanations in the paired mixture
weight space. The z-axis represents the weight placed on the lottery in Part 1, o*(¢,¢').
The y-axis represents the weight placed on the lottery in Part 2, a*(¢, m*(¢,¢')). As we
will see, convex preferences imply that m*(¢,¢') is created in Part 1 because it is strictly
preferred to both £ and ¢, therefore the individual should place full weight on m*(¢,¢')
in Part 2. For clarity, our interface only allows lottery weights to be accurate to the first
decimal place, meaning that there is some coarseness in the sample data. To account for
this, we expand the convex consistent region to either full or 90% weight on the mixture.
The region consistent with convex preferences can therefore be represented by the purple
region in Figure 1. On the other hand, stochastic choice implies that the relative weights
on lotteries are indicative of preference direction. For example if m*(¢, ') is made 70% of ¢
and 30% of ¢’ then ¢ is assumed preferred to ¢'. ¢ should also be preferred to m*(¢,¢) and



Figure 1: Theoretical Predictions
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therefore more than 50% of weight should be placed on ¢ in Part 2. The reverse should
also be true for Part 1 weights less than 0.5.> Regions consistent with this explanation
are shaded in pink on Figure 1. Finally, preference uncertainty implies that individuals
do not know how to specify their mixture. If this is true, then they would likely prefer to
bypass the question in exchange for a pre-determined mixture. If they bypass the question
in Part 1, then it also seems likely that they will bypass the related question in Part 2.
This prediction cannot be observed in the space of Figure 1 and so necessitates the opt out
property of the experimental design. Further details as to why this hypothesis might be

reasonable are given in Section 4.3.*

4.1 Convex preferences

If the individual has convex preferences then they construct the Part I mixture because

they strictly prefer it to all other mixtures. Given that the available set of mixtures in

3Additional assumptions are required for this prediction to hold, and are explained in more detail in

Section 4.2.
4These intuitive hypotheses are actually satisfied by some common theoretical models of incomplete

preferences, for example the Expected Multi-Utility Model (Evren and Ok, 2011).



Part 2 is a subset of those available in Part 1, the individual should place full weight on
the generated mixture in the Part 2 question in order to remain consistent. This provides

our first testable hypothesis:
Hypothesis 1: Convex Preferences
a*(6,m* (£, 0)) =0

4.2 Stochastic Choice

Take the same two part setup as before but suppose the second explanation is driving
mixture effects. Under this interpretation, we are less concerned with the mixture lottery as
an object of focus but rather the relative weights placed on each of the constituent lotteries.
As such, there is no reason to assume that the mixture generated in Part 1 will be selected
again in Part 2. The stochastic choice interpretation suggests that the relative weights
on each of the lotteries are indicative of preference direction, and this direction should be
consistent across Part 1 and Part 2 questions. We require two additional assumptions on
the noise distribution and utility structure in order to identify this within the experimental

setup.

Assumption 1:
la. I'(-,-) is strictly monotone increasing in both arguments and I'(z,0) = x
1b. (e,€') ~ F, o(-,-) where F, . is continuous and symmetric around the vector (0,0).

Assumption la. implies that for any fixed realization of noise, |I'(U(¢),€) — ['(U({'), €)]
is increasing with the difference of the underlying utilities. The condition that I'(x,0) = x
is not necessary for the purposes of the stochastic choice explanation, but is useful as it
nests the deterministic scenario by returning the true underlying utility in the absence of
noise. Assumption 1b. implies that the shocks being attributed to each lottery utility are
from a distribution with median zero, which is necessary to ensure that the distribution of
I'(-,-) is centered around the underlying utility of the lottery. Together these assumptions
generate two main observations. First, if U(¢) = U(¢') then the probability of choosing
lottery ¢ from the menu {¢,¢'} is 0.5. Second, if U(¢) > U({') then the probability of
choosing ¢ over ¢ is greater than 0.5, meaning that the proportion of times an option is
expected to be chosen corresponds directionally with the ranking of that option versus the
alternative. Because this explanation suggests that the relative weight placed on a lottery

provides information about the ranking of options, the values a*(¢, ¢') should respect the
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direction of preference ranking over the alternatives £ and ¢'. Put concretely, if U(¢) > U(¢')
then o*(¢,¢") > 0.5.

In order to make predictions over Part 2 questions we require some understanding of
where the mixture utility sits with respect to the constituent lotteries. For example, if the
specified mixture over the menu {¢, '} places more weight on lottery ¢, then this suggests
that ¢ is preferred to ¢. However, there is currently no means of making predictions
over the menus {m*(¢,¢'), ¢} and {m*(¢,¢'),¢'}. For that, one further assumption on U is

required;
Assumption 2: min{U(¢),U(¢")} < U(m*(¢,0")) < max{U(¢),U(¢)}

Assumption 2 is referred to as the “mixture-betweenness” axiom by Camerer and Ho
(1994), and is equivalent to quasi-convexity and quasi-concavity in preferences. Assuming
that the mixture is strictly preferred to both alternatives, as in explanation I results in a
violation of this axiom, and therefore can be used to identify differences between choices in

terms of explanations 1 and 2.°

Hypothesis 2: Stochastic Choice
(a*(€,0') — 0.5)(a* (¢, m*(£,0")) — 0.5) > 0

The lottery with the most weight given to it in Part 1 is preferred to the alternative
lottery. Given that the utility of the mixture must sit in between the utilities of the original
lotteries, it follows that the utility of the mixture is less than the utility of the lottery
with greater Part 1 weight, and greater than the utility of the lottery with lesser Part 1
weight. The proportion of weight (specifically, whether more or less than 50%) placed on
the lotteries in Part 2 should reflect the same ordering of utilities.

It is worth noting that this hypothesis is weaker than the one suggested in Section
3.1.2. Rather than the relative weights being identical to the choice proportions over
lotteries, Hypothesis 2 states that the relative weights should be the same side of 0.5 as
the choice proportions, providing a notion of “directional consistency”. Although not fully
equivalent, this notion of preference direction implied by choice proportions is related
to stochastic choice rules satisfying weak and moderate transitivity (He and Natenzon,
2024). A strengthening of this hypothesis requires further assumptions to be made on the

distribution of noise. One possible strengthening allows us to condition on the magnitude

®The Random Expected Utility model of CGul and Pesendorfer (2006) implies that o*(f,¢) =
a*(6,m*(¢,£')). Predictions differ as this model is not sensitive to the distance between utilities, only the
ranking. For discussion on the equivalence between discrete choice and Random Utility, see Block and
Marschak (1959)
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of relative weights rather than just direction. This extension is discussed in Section A1.

4.3 Preference Uncertainty

Finally, suppose that the third explanation holds, and that the majority of mixture effects
are an expression of individuals not having a preference over alternatives within the menu.
Intuitively, if the individual cannot construct the preference over menu {¢,¢'}, then it
seems likely that they will not be able to construct the preference over a menu containing
two lotteries weakly “in between” ¢ and ¢/, for example over the menu {¢,m*(¢,¢')}. To
state this prediction formally, suppose that an incomplete preference between ¢ and ¢ is

denoted £ < ¢/, then the third hypothesis can be written as follows,

Hypothesis 3:
If £ ¢/, then £ xim(€, ") for any m(¢,¢") € Co({¢,0'})\{¢,0'}

4.4 Developing a Test

The first two explanations—convex preferences and stochastic choice, both make predic-
tions over weight placed on the lottery in Part 1 and Part 2 questions. However, both
explanations make predictions over correlation of observations and spatial location of
observations. Additionally, the regions considered consistent with each of the explanations
are not of the same area. To elaborate, convex preferences allow observations to place
either full or almost full weight on the mixture in Part 2. This results in a region covering
approximately 18% of the total available space. Conversely, stochastic choice consistent
observations can sit within a region covering approximately 60% of the overall space.
Therefore, most standard econometric tools are not equipped to test for significance of the
two explanations in an unbiased manner.

Some spatial tests from the economics literature have been suggested for problems such
as these. Selten (1991) for example develops a test of area theories that are normalized by
the amount of space that would be covered given some benchmark prediction. Assuming
completely random choices over the Part 1 and Part 2 lottery weight space provides a
benchmark that is unbiased towards both explanations. This null is hereafter referred to
as the naive null hypothesis.

Given that the marginal distribution of Part I lottery weight is determined by the
decision makers, it might not be reasonable to assume uniformity across Part 1 weights.
Fudenberg et al. (2023) develop a test to balance the restrictiveness of a model with its
accuracy of predicting empirical behavior. In doing so, they develop a “completeness”
metric that corrects for this difference in marginal distributions from uniformity. The

second null, referred to as the empirical null hypothesis, is inspired by their metric.
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These null hypotheses are generated by first simulating a dataset according to i.i.d
draws of Part 1 and Part 2 lottery weights. The distribution is uniform over the support of
Part 2 weights for both the naive and empirical null hypotheses. As mentioned previously,
the distribution of Part 1 lottery weights is uniform for the naive null hypothesis, and taken
from the empirical marginal distribution of Part I weights for the empirical null hypothesis.
Next, the proportion of observations that are consistent with convex preferences, stochastic
choice, and residual are computed and then compared to the empirical proportion observed
in our dataset. We repeat this data simulation process for a number of iterations, then,
akin to a standard parametric bootstrapping technique, we use these simulated proportions
to determine confidence intervals for each of our explanations against the null hypotheses.

Two minor adjustments have to be made when moving from the continuous space of
theoretical predictions, as in Figure 1, to the more coarse space of observations provided
by our experimental design. As mentioned previously, participants can set mixture weights
accurate to the first decimal place: {0.0,0.1,...,1.0}. Additionally, placing full weight on
one of the lotteries in Part I results in the mixture being identical to one of the two original
lotteries, meaning that the Part 2 question is either identical to the Part 1 question or
contains two identical lotteries. As these observations are not useful to us, we simulate
over the truncated Part I lottery weight space, {0.1,...,0.9} while still simulating over the
full Part 2 lottery weight space, {0.0,0.1, ..., 1.0}.

5 Experimental Design

There are three treatments, all of which are split into two parts. Each part features 12
binary comparisons between simple lotteries. Part I contains binary comparisons between
lotteries taken from an initial set, {¢, ¢'}, whereas Part 2 comparisons include lotteries from
the initial set and lotteries that are equivalent to mixtures provided in Part 1, {£,m*(¢,¢')}.

For each comparison, decision makers have the opportunity to specify their preferred
lottery choices, or move on to the next question without specifying (opt out). If choices
are not provided, then a pre-specified, yet undisclosed lottery is used as default. Further

details as to how this is determined are given in Section 5.4.

5.1 Part1l

There are a total of 24 initial lotteries from which the binary comparisons in Part 1 are
comprised. These lotteries are split into two groups, where each group contains lotteries
that are approximate mean preserving spreads of each other. These groups have an
approximate expected value of $12 and $14 respectively, while the support size of lotteries

vary from 2 to 5.
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Figure 2: Part 1 and Part 2 Questions
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Menus are then constructed both within group and between group. Three comparisons
are constructed containing lotteries from only group 1, and three are constructed containing
lotteries from only group 2. A further six comparisons are constructed containing one
lottery from each group. This makes the total of 12 binary comparisons in Part 1. All
binary comparisons are shown in random order to each participant and no lottery appears

in more than one comparison.

5.2 Part 2

Every comparison in Part 2 contains one mixture from Part 1, and one of the initial
lotteries from which the mixture was constructed. This means that for each of the 12
comparisons in Part 1, there are two possible comparisons to be shown in Part 2. Figure 2
illustrates how Part 2 questions are constructed using the mixture generated in Part 1.
Each of the under braces over the lower horizontal line represent separate Part 2 questions,
where the left brace shows the Part 2 question concerning the menu {¢,m*(¢,¢)} and the
right brace represents the question concerning {m*(¢,¢'),¢'}.

The binary comparisons for Part 2 are then chosen as follows. The interface randomly
selects up to four mixtures that were specified by the decision maker in Part 1, and asks
both binary comparisons for each mixture in Part 2. This makes a total of up to eight
questions. The remaining four questions are taken from two randomly chosen mixtures that
were not specified by the decision maker. If there were less than four specified mixtures, or

less than two unspecified mixtures, the interface randomly selects questions in order to get
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as close to that proportion as possible. These proportions are selected such that we have
sufficient data to make comparisons between Part 1 and Part 2 both for questions where

mixtures were specified, as well as for questions where mixtures were not specified.

5.3 Treatments

There are three main treatments. Each treatment is designed to capture a different setting
in which we might consider mixing to be prevalent. The experiment takes a between-subject
design, meaning that each participant only participates in a single treatment.

Treatment 1 (Slider) provides an illustration of the two lotteries in the menu at the top
of the screen, and a third box in the middle titled “Your Preferred Lottery”. Participants
specify their preferred lottery using a slider that ranges from 0 to 10. As they move this
slider, the box titled “Your Preferred Lottery” shows the mixture lottery associated with a
convex combination of the two original lotteries. The relative weights used to construct
the mixture correspond to the position of the slider, and the mixture lottery adjusts
dynamically as the slider moves. The slider is used for both Part 1 and Part 2 questions
in Treatment 1, and the Slider treatment interface is depicted in Figure 3.

Treatment 2 (Repeated Choice) speaks more directly to the repeated choice representa-
tion of mixing. Instead of having a slider, participants are shown the two original lotteries
and are asked to provide 10 answers. Each answer is a forced choice between “Lottery A”
and “Lottery B”. Participants are informed that, if they are eligible for bonus payment,
the lottery that they answered in one of their 10 answers for one random question will
be simulated. The mixtures in Part 2 are constructed according to the proportion of the
ten “Lottery A” answers versus “Lottery B” answers in Part 1. Figure 4 illustrates the
Repeated Choice treatment interface.

Finally, Treatment 3 (Slider Info) is identical to Treatment 1, except that participants
are informed at the beginning of Part 2 that the specified or non-specified preferred lotteries
will be shown again in Part 2 questions. The exact wording states, “...in every question,
one of the lotteries (either Lottery A or Lottery B) will be a preferred lottery that either
you specified in Part 1 or was chosen for you.” A concern while designing the interface
was that individuals won’t recognize their mixtures in Part 2 questions. Treatment 3 is

designed to address this.

5.4 Incentives and Payments

Participants are provided a participation payment of $5.50. One in five participants will
also be selected for bonus payment. If they are selected, a random question will be selected

as the bonus question.
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Figure 3: Slider Treatment Decision Screen

Question Number 1 of 24

Time before you can proceed: 0

Lottery A Your Preferred Lottery B
Lottery
$8 6% $8 20%
so [ 20% $o [ 28%
$10 [ 6% $10 20%
$14 60%  $14 60%  $14 60%
7 . 3

Proceed to Next Question

Notes: Lottery A and Lottery B are the constituent lotteries over which the decision maker can
generate a mizture The lottery labelled “Your Preferred Lottery” represents the mixture
corresponding to the slider position. In this case the preferred lottery is mizture constituting of 70%
Lottery A and 30% Lottery B. The preferred lottery dynamically changes as the position of the
slider changes.
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Figure 4: Repeated Choice Treatment Decision Screen

Question Number 1 of 24

Time before you can proceed: 0

Lottery A Lottery B

$10 [0 20%
$11 [N 40%
$12 [0 20%

$15 30% $15 30%

$17 [N 30% $17 [N 30%

Answer 1: Lottery A Lottery B

Answer 2: Lottery A Lottery B

Answer 3: Lottery A Lottery B

Answer 4: Lottery A Lottery B

Answer 5: Lottery A Lottery B
Answer 6: Lottery A Lottery B
Answer 7: Lottery A Lottery B
Answer 8: Lottery A Lottery B
Answer 9: Lottery A Lottery B

Answer 10: Lottery A Lottery B

Proceed to Next Question

Notes: Lottery A and Lottery B are the constituent lotteries over which the decision maker can
generate a mizture. Individuals choose between Lottery A and Lottery B a total of 10 times. The
miztures for Part 2 questions are then generated according to the proportion of times Lottery A was

chosen over Lottery B.
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In this question, the participant may or may not have chosen to specify their preferred
lottery. If they did specify, then for Treatments 1 and 3, the reduced lottery associated
with that mixture will be simulated by the computer and a payoff is provided according
to the outcome. In Treatment 2, one of the answers will be drawn at random and the
preferred lottery for that answer will be simulated. The bonus payment will then be the
simulated outcome of that lottery.

If the participant did not choose their preferred lottery, then in Treatment 1 and 3,
the computer resorts to a pre-specified mixture over the two lotteries within the menu.
This mixture is generated uniformly at random across the convex combination of the two
lotteries. The bonus payment is then equal to the simulated outcome of that lottery. In
Treatment 2, a number between 0 and 10 is drawn at random to denote the number of
Lottery A choices (10 minus that number denotes the number of Lottery B choices). These
are then shuffled, and the lottery corresponding to the previously designated bonus answer
is simulated. This methodology ensures that the payment mechanism when the lotteries
are not specified is equivalent across treatments.%”

Participants also answered two comprehension questions at the end of the study, both
of which could have been selected as the bonus question. If this was the case then they

receive a fixed bonus of $5 if answered correctly, and $0 otherwise.

6 Results

6.1 Data Quality and Filtering

Data from a total of 300 participants per treatment were collected in July and August
2025. Treatment interfaces where coded in oTree (Chen et al., 2016) and submissions were
collected via the online platform Prolific. The median time taken was 22m 38s and the
average payment was $8.27, which includes the $5.50 participation fee.

A total of 224 participants have been dropped from the original dataset due to failing

comprehension questions or not specifying a sufficient number of mixtures. Specifically,

SParticipants also have to wait 10 seconds before they can proceed to the next question. This helps
prevent a preference for non-specification due to speed of completing the study.

"Incentivizing incompleteness is a challenging problem, and our methodology of allowing participants to
skip answering questions acts as a well incentivized proxy for this. It is worth re-iterating that our proxy
is likely a lower bound of preference uncertainty—firstly because participants tend to prefer answering a
question rather than not, and secondly because an ambiguity averse decision maker would have a weak
preference for constructing a mixture as opposed to the randomly generated substitute lottery. On the other
hand, we do not attempt to further categorize the residual observations, many of which may have been
chosen for no other reason than preference uncertainty. Other papers with novel methods of incentivizing
uncertainty or incompleteness include Danan and Ziegelmeyer (2006), Nielsen and Rigotti (2022), Halevy
et al. (2023), and Feldman and Zhou (2024).
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206 participants failed at least one of the two comprehension questions, and 24 chose not

to specify their answers for every question in either Part 1 or Part 2 of the study.

Figure 5: Part 1 and Part 2 Mixture Weights: Slider Treatment
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Part 1 Lottery Weight

Notes: Larger points represent a greater number of observations. Light pink regions in the upper
right and lower left quadrant represent regions that are directionally consistent. The blue region
given by y < 0.1 represents the region that is consistent with convex preferences. Not Specified
refers to observations where weights were not specified. Degen Low (resp. Degen High) refers to
cases where the Part 1 lottery weight was 0 (resp. 1). Values in black represent the number of
explanation consistent regions as a proportion of fully specified and Part 1 non-degenerate
observations. Light grey values represent the same number but as a proportion of all paired
observations. Proportions sum to more than 1 as some observations can be consistent with both

convez preferences and stochastic choice.

6.2 Partl

This section discusses the main findings from Part I answers in the Slider treatment. Due
to the experimental design selecting only a subset of Part 1 answers to be paired with
Part 2 questions, we begin by looking at all Part I answers, regardless of whether they

were later paired with a Part 2 question.
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6.2.1 Specification rates are high

As mentioned in Section 5, participants were given the opportunity to opt out of constructing
their mixtures in exchange for a pre-specified and undisclosed lottery. Overall, only 8.7% of
Part 1 answers are unspecified, meaning that decision makers have a strong preference for
constructing their own preferred lottery given the opportunity. 56.2% of participants chose
to specify their answers for all Part 1 questions, while approximately 1.3% of participants
chose to specify less than half of their answers. The willingness to specify appears to be
independent of whether the lotteries had the same or different expected values—91.4% of
questions with different expected values for each lottery and 90.1% for those where the

lotteries had the same expected value (z-stat: 0.571, p-value: 0.568).

6.2.2 Approximately half of specified answers are degenerate

50.5% of specified Part 1 answers place full weight on one of the lotteries, meaning that
approximately half of observations involved decision makers constructing a non-degenerate
mixture. The modal non-degenerate weight placed on lotteries is an equal split of weight

across the two lotteries. This equal split accounts for 14.0% of all Part 1 specified answers.

Overall, participants tend to specify the majority of their Part 1 answers, and approxi-
mately half of those specified answers are non-degenerate. There is no strong relationship
between characteristics of the lotteries within a question and the probability of specification.
Additionally, there is no evidence that participants are less likely to specify their mixtures
as they progress through Part 1 questions (see Figures A2 and A3 for more detail). The
proportion of degenerate mixing conditional on specification is significantly smaller than
would be predicted by EU, as this claims that the proportion of non-degenerate mixing
should be vanishingly small and only occur under complete indifference between the two
lotteries. As such, these levels of mixing demonstrate clear violations of EU, and suggest
that giving decision makers the opportunity to select their “preferred lottery” from the

convex hull of alternatives results in them doing so frequently.

6.3 Part 2

The following sections focus on paired (Part 1, Part 2) observations. Table 1 provides a
breakdown of Part 1 specification, Part 1 degenerate, and Part 2 specification proportions,
as well as the proportion of observations associated with each of the explanations. These
values differ slightly from the results provided in the previous section due to the experimental
interface selectively sampling between Part 1 specified and Part I unspecified answers.

“Fully specified and Part I non-degenerate” hereafter refers to observations in the last
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Table 1: Proportions and Null predictions for Slider Treatment

Part 1 Part 1 Part 2 Explanation Proportion Null
Specified Degenerate Specified Type Total Subset Naive  Empirical
False 0.111 - - -
True 0.462 — - —
False 0.027 - - -
True False Convex 0.059  0.148 0.182***  0.182***
True Stochastic Choice 0.303  0.757 0.596***  0.685"**
Residual 0.081 0.202 0.323***  (0.253***

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Part 1 Specified refers to the proportion of Part 1

observations that are specified. Part 1 Degenerate refers to the proportion of Part 1 observations

that are degenerate mixtures. Part 2 Specified refers to the proportion of observations that are

specified in Part 2. Type refers to the different explanations. Proportion Total refers to the

proportion of overall paired observations. Proportion Subset refers to the proportion of fully

specified and Part 1 non-degenerate observations. Null Naive and Null Empirical refer to the

proportion of observations expected to be consistent under the naive null hypothesis and the

empirical null hypothesis respectively. Stars represent the significance of difference between

Proportion Subset and each of the Null Predictions. Proportions may sum to more than 1 as

observations can be consistent with both convex preferences and stochastic choice.
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three rows of Table 1.

6.3.1 Consistency with convex preferences is low

The overall proportion of observations placing full or 90% weight on the mixture in Part 2
is 5.9%. This is equal to 14.8% when we consider this value as a proportion of fully specified
and Part 1 non-degenerate observations. Given that consistency with convex preferences
requires this number to be equal to 100%, there is very little evidence of participants
having a strict preference for the mixture in Part 2. Figure 5 illustrates the empirical
proportions of observations consistent with the different explanations. Values in black
represent the number of observations as a proportion of all paired observations. Values in
grey represent the number of observations as a proportion of fully specified and Part 1
non-degenerate observations.

Of those observations that are convex consistent, 48.2% occur when the lottery weight
in Part 1 is strictly less than 0.5. 24.1% occur when the weight on the lottery in Part
1 is equal to 0.5. This suggests that the percentage of convex consistent observations is
driven largely by cases where the lottery was not the majority constituent of the generated
mixture in Part 1.

Although the proportion of convex preference consistent observations is clearly smaller
than what is predicted in Section 3.1.1, it is also smaller than what is predicted under both
of the null hypotheses. Table 1 states the predictions under the naive null hypothesis where
observations are distributed uniformly at random across the (Part 1, Part 2) non-degenerate
lottery weight space. This space corresponds to the regions not shaded in grey of Figure
5. Under this null, an average of 18.2% of observations should be consistent with convex
preferences. The parametric bootstrapping technique described in Section 4.4 implies that
the actual proportion of convex consistent observations is significantly smaller than the
naive null hypothesis at the 1% level. Not only is there very little evidence in support of
convex preferences, but the empirical proportion is also significantly lower than what would
be observed if decision makers were selecting mixture weights at random. This provides
strong support against convex preferences being the main underlying rationalization for

mixture effects.

6.3.2 The proportion of stochastic choice consistent observations is high

The set of observations consistent with stochastic choice is depicted by the pink regions in
Figure 5. 30.3% of all paired observations fall within this region, which equates to 75.7%
of fully specified and Part 1 non-degenerate observations.

Unlike the convex consistent observations, stochastic choice consistent observations are

relatively balanced across Part 1 lottery weights—28.0% occur when Part 1 lottery weight
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is strictly less than 0.5 and 31.6% occur when the weight is strictly more than 0.5. The
remaining proportion occurs when Part 1 lottery weight is distributed equally across both
lotteries.

This proportion is significantly larger than the naive null prediction at the 1% level.
The average proportion of uniformly distributed points falling within the consistent region
is 59.6%, which is 16.1 percentage points less than the sample proportion. Table 1 also
shows the prediction under the empirical null hypothesis. The empirical null hypothesis
is designed to account for the lack of uniformity across Part 1 lottery weights. This is
particularly important for the stochastic choice explanation as it corrects for the mass
of observations distributing Part 1 weights equally across constituent lotteries. Despite
this adjustment, the sample proportion is again significantly larger than the empirical null
hypothesis at the 1% level.

6.3.3 The proportion of residual observations is low

Residual observations are fully specified and Part I non-degenerate observations that are
consistent with neither convex preferences nor stochastic choice. Residual observations
account for 20.2% of fully specified and Part 1 non-degenerate observations, which is
significantly less than both the naive and empirical null hypothesis predictions at the 1%
level. The proportion of residual observations with Part 1 lottery weight less than 0.5 is
the main contributor to total residual observations. This is natural as the space consistent
with neither of the other explanations is smaller when Part I lottery weight is greater
than 0.5.

6.3.4 Non-specification in Part 1 does not imply non-specification in Part 2

To re-iterate, 91.3% of all (unpaired) Part I mixtures are specified on aggregate. Of the
Part 2 questions that did not involve a degenerate mixture, 90.6% were specified. This
difference is not significant (z-stat: 0.700, p-value: 0.484) and suggests that there is little
variation in the aggregate differences in specification proportions across parts.

However, Hypothesis 3 makes a specific prediction over Part 1, Part 2 pairs, suggesting
that non-specification for the Part 1 question implies non-specification for the related Part
2 question. The intuition is that if a decision maker is unable to decide which lottery
they prefer between ¢ and ¢/, then they should be unable to decide between ¢ and m* (¢, ¢').
When looking at paired observations, the probability of specification in Part 2 when the
Part 1 mixture was specified is 93.6%. The probability of specification in Part 2 when
the Part 1 mixture is not specified is 76.0% (z-stat: 8.632, p-value < 0.001). Although
the probability of specification is significantly lower when the Part I mixture has not

been specified, the hypothesis states that specification rates should be close to zero, and
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this is clearly not the case. Consequently, there is not sufficient evidence to suggest that

preference uncertainty is the main contributor to mixture effects.

In summary, stochastic choice consistent observations dominate the space over (Part 1, Part 2)
lottery weights. Both convex consistent and residual observations make up a significantly
lower proportion of observations than would be predicted if decision makers were behaving
randomly, yet no explanation captures all observations. Degenerate mixing occurs often but
with a much lower frequency than EU predicts. There is also little evidence of preference

uncertainty.

6.4 Differences Across Treatments

Although the findings above are with respect to the Slider treatment, they tend to be
robust across all three of the decision making interfaces. Table 6./ specifies the proportions
of observations falling into each explanation category for all treatments. The Slider Info
treatment is effective in increasing the number of observations that are consistent with
convex preferences to the extent that it is significantly larger than both null hypotheses. The
reverse is true for the two other treatments. The proportion of residual observations remain
relatively constant across treatments, while the proportion of stochastic choice consistent
observations is slightly higher in the Repeated Choice treatment at 78.4% compared to

either of the Slider treatments.

Table 2: Proportion of Observations Consistent with Explanation by Treatment

Slider Info Repeated Choice
Proportion  Naive  Empirical Proportion  Naive  Empirical
Convex 0.237 0.182***  0.182*** 0.114 0.182***  0.182***
SC 0.757 0.596***  0.679*** 0.784 0.596***  0.681***
Residual 0.184 0.323***  0.257*** 0.19 0.323***  0.254***

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Proportion refers to the proportion of fully specified and
Part 1 non-degenerate answers that are consistent with each of the explanations. Naive and
Empirical refer to the predicted proportions under the naive and empirical nulls. Refer to Section
4.4 for further details. Convex refers to convex preferences, SC refers to stochastic choice, and

Residual refers to residual observations. Equivalent values for the Slider treatment are given in
Table 1.

The other noticeable difference between treatments occurs in the specified and Part 1

degenerate answers. 13.4% of observations in the Repeated Choice treatment have Part 1
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weights not specified, which is approximately 5 percentage points more than the other two
treatments. Additionally, 65.6% of Part 1 specified answers are degenerate in the Repeated
Choice treatment, as opposed to approximately 50.5% in the two Slider treatments. This
suggests that making repeated decisions across a fixed menu results in a slightly higher
rate of non-specification and a slightly higher rate of degenerate mixing as opposed to

constructing convex mixtures directly.

Given that the proportions of explanation consistent observations are relatively simi-
lar across treatments, the following two sections looks at observations pooled across all

treatments.

6.5 Individual Level Heterogeneity

Convex and stochastic choice consistent observations are both present within the data, yet
it is not clear whether either of these explanations are stable decision maker traits. Figure
6 shows the proportion of observations per individual that are consistent with each of the
explanations. The vast majority of individuals have weakly less than 50% of observations
consistent with convex preferences (93.1%). Similar to convex preferences, the proportion

of residual observations is relatively low within participant.

Figure 6: Individual Level Heterogeneity for All Treatments

Convex o Stochastic Choice e Residual
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0.3 0.3
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Proportion of Decisions per Participant

Notes: The z-axis shows the proportion of fully specified and Part 1 non-degenerate answers, within
participant, that are consistent with each of the explanations. The y-axis shows the proportion of

participants.

On the other hand, stochastic choice consistent decisions are frequent within participant
as well as across—77.4% of participants have strictly more than 50% of observations

consistent with stochastic choice. The modal proportion of choices consistent with stochastic
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choice per participant is 1, whereas it is 0 for both convex consistent observations and

residuals.

6.6 Determinants of Mixture Weights

Table 3 shows OLS regressions for lottery weight on lottery and lottery pair characteris-
tics. Regression (1) shows that the weight on lottery B is significantly increasing in the
expected value of lottery B and significantly decreasing in the expected value of lottery A,
demonstrating that changes in weights are sensitive to the difference in expected value.
Second, weight on lottery B is decreasing in the variance of lottery B, significant at the
10% level. Although neither variance of lottery A or difference in variance is significant,
it demonstrates that individuals are at very least taking the variance of lotteries into

consideration when selecting mixture weights.

Table 3: OLS Regression of Lottery Weight on Menu Characteristics

Weight On Lottery B
(1) (2) (3)

Intercept 0.023  (0.064) 0.021  (0.063) 0.017  (0.01)
LA EV —0.122***  (0.005) —0.124*** (0.005) -

LB EV 0.123**  (0.005)  0.125** (0.005) -

LA Var 0.002  (0.001) —0.0 (0.001) -

LB Var ~0.004** (0.001) —0.001  (0.001) -

Part 0.003  (0.007)  0.006  (0.009) 0.005  (0.007)
LA Support - 0.03***  (0.004) -

LB Support - —0.031***  (0.004) -

EV Diff. - - 0.124***  (0.004)
Var Diff. - - 0.0 (0.001)
Support Diff. - - —0.03***  (0.003)
N Obs. 10748 10748 10748

R Squared 0.162 0.18 0.18

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Li EV, Li Var, and Li Support refers to the FExpected
Value, Variance, and Support for lotteries i € { A, B} respectively. Variables with Diff. is the
lottery characteristic for lottery B minus the lottery characteristic for lottery A. Standard errors

are show in parentheses and clustered at the individual level.

Whether the question is a Part 1 or Part 2 question is not a significant determinant of

lottery weight when controlling for other lottery characteristics. Finally, LA Support and
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LB Support in regression (2), and support difference in regression (3) are all significant
at the 1% level. The larger the support of lottery B, the less weight is placed on lottery
B. Given that the support of the (non-degenerate) mixture must be at least as large as
the support of both constituent lotteries, this aversion to large supports may be capturing

some aversion to mixtures in Part 2 questions.®

7 Discussion

This study attempts to identify the motivating mechanisms underlying mixture effects. In
order to do so, I categorize rationalizing models from the theoretical literature into three
normative explanations, and design a two-part experiment to disentangle them. I find that
less than 15% of paired observations are consistent with convex preferences. This value is
significantly less than what would be expected from an individual constructing mixtures
uniformly at random, implying not only a lack of evidence in favor of convex preferences,
but significant evidence against. On the other hand, approximately 75% of observations
are consistent with our notion of stochastic choice, and, although no single explanation
is congruent with all the data, stochastic choice appears to be the predominant driver of
mixture effects. There is also little evidence of residual observations and mixtures due to

preference uncertainty.

In terms of contribution to the theoretical literature, this study suggests that models
allowing for stochasticity over preferences tend to outperform more modern models allow-
ing for preference uncertainty or convexity of preferences. The additional complication of
allowing for non-standard preferences may not be necessary, and instead we should focus on
structuring our models around standard, well-behaved preferences, but allowing for noise

to produce a variation over decisions when implemented in traditional choice frameworks.

Practically speaking, these findings have important implications for policy design and
behavioral welfare more generally. Analysts are frequently tasked with making inference
about preferences from “mixed” datasets. Our findings suggest that mixture effects are
not due to convex preferences, and mixing should not be considered as a deliberate act
designed to construct a larger, maximally preferred alternative. Consequently, responding
by offering the decision maker a mixture lottery aligning with the mixture in the dataset
is not likely to be a satisfactory welfare maximizing solution. In fact, the results suggest
that the information about preferences is mainly contained within the relative weights

assigned to constituent lotteries within the mixture. This suggests that a policy designer

8This finding is closely related to a finding in Puri (2018), where an agent “assesses a lottery less

favorably if it contains more outcomes”.
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wishing to maximize decision maker welfare might be better off providing the alternative
that is chosen most frequently, or, equivalently, the alternative that has the largest weight

assigned to it within the mixture.
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Appendix
A1l Size Consistency

It could be argued that our notion of stochastic choice consistency is a weak one. This
may be true, but further assumptions are required for strengthening.
For example, allowing € to be drawn from an identical distribution across questions

results in a condition on the relative size of weights across parts.
Assumption 3: (€,€') ~iid Fe e (-,-)

This allows for the distribution of noise to be fixed across all Part 1 and Part 2 questions.
As a result, the fact that the utility of the mixture sits between the utility of the most
preferred and least preferred lotteries results in the effect of noise being larger in Part 2.
Consequently, the stochastic choice model predicts that weights placed on lotteries in Part
2 questions will be less extreme than the weights placed on the same lotteries in Part 1.

This formalizes our next hypothesis;

Hypothesis 2°: Stochastic Choice and Size Consistency
1. 0.5 < a*(&,m*(¢,0)) < a*(£,0) if a*(£,¢') > 0.5
2. (0, 0) < a*(t,m*(£,0)) < 0.5 if a*(¢,0') < 0.5

Intuitively, allowing noise to be drawn from the same distribution means that the proportion
of weight placed on the most preferred lottery must increase with the difference in utilities.
Because the mixture utility sits between the utilities of the two original lotteries, the
relative utility difference between the two original lotteries is larger than the difference
between one of the lotteries and the mixture lottery. This implies that noise has a greater
effect in Part 2 questions than in Part I questions, resulting in weights being less extreme
in Part 2. I refer to this as Size Consistency, and Hypothesis 2’ reflects the combination of
stochastic choice and Size Consistency.

There is empirical support for size consistency, although it is not as definitive compared
to stochastic choice. Table A/ shows the proportion of size consistent observations both
as a proportion of all fully specified and Part I non-degenerate observations, and as a
proportion of stochastic choice consistent observations. Size consistent and stochastic
choice consistent observations as a proportion of fully specified and Part I non-degenerate
observations are significantly larger than the empirical null across all treatments. Size
consistent observations as a proportion of stochastic choice consistent observations are also

significantly larger than the empirical null hypotheses across two of the three treatments.
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Slider Info has this value as significantly smaller at the 10% level. Naive null hypothesis
values are larger than empirical null values due to the fact that size consistency is most
restrictive when Part 1 lottery weight is equal to 0.5. The empirical null therefore has a

smaller value than the naive null given the mass of observations at 0.5 in the sample data.

A2 Proofs

A2.1 Hypothesis 2 (Stochastic Choice)

a>b = P(I'(a,e) >I'(b€e))>0.5

Define the following two sets:
A={(e,€):e>¢€}

and
B:={(e,d):e <€ & I'(a,e) > I'(b,€)}

The event I'(a,€) > I'(b,€) is equivalent to either events A or B occurring. By definition
they are disjoint, and so P(AU B) = P(A) + P(B). Therefore, we must prove that
P(A)+ P(B) > 0.5.

P(A) = 0.5 follows from symmetry of the joint distribution F, .. Define A(e,€') =
I'(a,e) —I'(b,€') for some (e, €') on the interior of the support of Fe . By strict monotonic-
ity of I', A(e, €) > 0. By continuity of F, ./, it must be the case that there exists some (¢, €’)
in the support of F, o where € is larger than e and such that A(e,¢’) > 0. This proves
that the set B is non-empty and contains (e, €’) pairs that occur with strictly positive
probability, meaning that P(B) > 0. P(AU B) > 0.5 implies P(I'(a,€) > I'(b,€')) > 0.5.

P(I'(a,e) > I'(be')) >05 = a>b

Towards a contrapositive suppose a < b. By monotonicity of I" in the first argument we
know that I'(a,€) < I'(b, €). By monotonicity of the second argument we also know that the
event I'(a,€) > I'(b,€') is contained within the event e > €/. The probability of this event
occurring is 0.5 by symmetry of F, . Therefore, the probability that I'(a,€) > I'(b,€') is

bounded above by 0.5 when a < b. We reach a contrapositive.
Given what has been proven above, a*(¢,¢') > 0.5 implies U(¢) > U(¢'). Assumption 2 im-

plies that U(¢) > U(m*(¢,¢)) > U{"). U(¢) > U(m*(¢,¢)) implies a*(¢,m*(¢,¢')) > 0.5.
Hence we have Hypothesis 2.
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A2.2 Hypothesis 2’ (Stochastic Choice and Size Consistency)

Suppose WLOG that U(¢) > U(¢"). By assumption 2 this implies U(¢) > U(m*(¢,¢')) >
U({"). Define the following two sets:

A= {(e,e): T(U{),e) > T (U{),€)}
and
B:={(e,d): T (UW{),e) > T(Um*(£,1)),€)}

and note that the occurrence of the event B implies the occurrence of event A for any given
realization of (e, €’). The identical distribution of shock pairs implies that P(B) < P(A).
If follows that P(I"(U({),e) > L'(UX'),€")) > P(I'(UX),e") > T'(U(m*(£,0)),€")). If the
mixture weights are proportional to the probability of choosing one lottery over another,
then the previous statement implies o*(¢,¢') > o*(¢,m*(¢,¢')). The more general result
can therefore be stated as |a*(¢,¢') — 0.5 > |a*(¢,m*(¢,£)) — 0.5].

A3 Supplementary Tables and Figures

Table Al: Observation Counts for Filtration

Treatment Part Total After Degen. Drop After Non-specified Drop
. 1 2796 2796 2552
Slider
2 2796 1440 1305
) 1 2772 2772 2548
Slider Info
2 2772 1458 1337
. 1 2544 2544 2202
Repeated Choice
2 2544 1064 804

Notes: Total refers to the total number of observations by treatment and part that satisfied the
initial comprehension check filters. After Degen. Drop refers to the number of observations that
also where not Part 1 degenerate answers. After Non-specified Drop refers to the number of

observations that satisfy previous filters and also are were specified.
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Table A2: Summary Statistics

Specified Degenerate Weight on Weight on
Treatment Part . . .
Mixture Higher EV Mixture
Slid 1 0.913 (0.005) 0.505 (0.01) 0.657 (0.007) —
ider
2 0.906 (0.008) 0.304 (0.013) 0.58 (0.009) 0.446 (0.009)
. 1 0.919 (0.005) 0.506 (0.01) 0.668 (0.007) —
Slider Info
2 0.917 (0.007) 0.39 (0.013) 0.603 (0.01) 0.475 (0.01)
. 1 0.866 (0.007) 0.656 (0.01) 0.715 (0.008) —
Repeated Choice
2 0.756 (0.013) 0.34 (0.017) 0.571 (0.012) 0.425 (0.012)

Notes: Summary statistics by treatment and part of unpaired observations. Only Part 2
observations where the mizture is degenerate from Part 1 are excluded. Specified refers to the
proportion of observations that are specified. Degenerate Mizture refers to the proportion of
specified observations that are degenerate. Weight on Higher EV refers to the weight on the higher
expected value lottery conditional on expected values not being equal. Weight on Mizture refers to
the weight on the mixture. This only applies for Part 2 observations. Standard errors are given in

parentheses.

Table A3: Proportions of Part 1 and Part 2 Lottery Weights by Location

Lottery Weight Part 2

Slider Slider Info Repeated Choice

>0.5 =05 <05 Total >0.5 =05 <05 Total >0.5 =05 <05 Total

> 0.5 0.194 0.045 0.106 0.345 0.188 0.042 0.121 0.351 0.234 0.032 0.091 0.357
=0.5 0.124 0.094 0.088 0.306 0.125 0.072 0.097 0.294 0.157 0.056 0.085 0.298
<0.5 0.137 0.038 0.174 0.349 0.122 0.033 0.2 0.355 0.125 0.048 0.173 0.346
Total 0.455 0.176 0.369  — 0.435 0.147 0.418 — 0.515 0.136 0.349 —

Notes: Column values represent proportions of Part 2 lottery weights that are greater than, equal
to, or less than 0.5. Rows represent the proportion of Part 1 lottery weights that are greater than,
equal to, or less than 0.5. These are proportions of fully specified and Part 1 non-degenerate

observations from the paired dataset.
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Table A4: Size Consistency and Stochastic Choice across Treatments

Slider Slider Info Repeated Choice

Prop.  Naive Emp. Prop. Naive Emp. Prop. Naive

Size and SC  0.342  0.293"**  0.253*** 0.275  0.293  0.247* 0.317  0.293*  0.229***
Size as SC ~ 0.452  0.529™*  0.389*** 0.363 0.529"*  0.39" 0.404 0.529™*  0.368"*

Notes: *p < 0.1; **p < 0.05; ***p < 0.01. Prop. refers to the sample proportion of consistent
observations in the paired, fully specified and Part 1 non-degenerate dataset. Naive refers to the
Naive null hypothesis proportion. Emp. refers to the Empirical null hypothesis proportion.
Asterisks represent level of significance of difference between Prop. and the respective hypothesis.
Size and SC refers to the proportion of size consistent and stochastic choice consistent observations
as a proportion of fully specified and Part 1 non-degenerate observations. Size as SC refers to the
the number of size consistent observations as a proportion of stochastic choice consistent
observations.

Figure A1l: Distribution of Explanation Consistent Observations (Slider treatment)

Convex Stochastic Choice Residual
0.45 0.45 0.45
0.40 4 0.40 4 0.40
0.351 0.35 1 0.35 1
0.301 0.30 1 0.301
0.25 4 0.25 4 0.25 4
0.201 0.20 1 0.20 1
0.154 0.15 4 0.15 4
0.104 0.10 4 0.10 4
0.05 - ‘ I I I L 0.05 - 0.05 - | I I I
0.00 T ¥ T T l T I. 0.00 T T T T T T T T T 0.00 T T T T T T T I.
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

Part 1 Lottery Weight

Notes: Figures show a breakdown of explanation consistent observations by Part 1 lottery weight.

The x-axis shows the Part 1 lottery weight and the y-axis shows the proportion of observations.
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Table A5: Proportion of Part 2 Paired Observations Consistent with Explanations

Slider Slider Info Repeated Choice
0% 50%  100% 0% 50%  100% 0% 50%  100%

Convex 0.71 0.277 0.013 0.6 0321 0.079 0.799 0.179 0.022
Stochastic Choice 0.081 0.318 0.6 0.086 0.305 0.609 0.051 0.337 0.612
Residual 0.646 0.311 0.044 0.685 0.271 0.045 0.63 0.348 0.022

Notes: Part 2 paired observations: {€,m*(¢,¢')} and {¢',m*(£, ")}, consistent with Convex
Preferences and Stochastic Choice as a proportion of fully specified and Part 1 non-degenerate

observations. Both Part 2 questions are specified.

Table A6: Observations Consistent with Explanations by Part I Lottery Weight

Slider Slider Info Repeated Choice

<05 =05 >05 <05 =05 >05 <05 =05 >05

Convex 0.072 0.036 0.041 0.114 0.064 0.059 0.062 0.026 0.026
Stochastic Choice 0.212 0.306 0.239 0.233 0.294 0.23 0.221 0.298 0.266
Residual 0.137  —  0.065 0.122 —  0.062 0.125 — 0.066

Notes: Number of observations consistent with convex preferences and stochastic choice by Part 1
lottery weight as a proportion of fully specified and Part 1 non-degenerate observations. < 0.5,
= 0.5, and > 0.5 refer to Part 1 lottery weights less than 0.5, equal to 0.5 and greater than 0.5.
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Figure A2: Proportion of Specified Observations by Round Number (Slider treatment)
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Notes: The proportion of observations specified versus not specified by round number. Data from
the unpaired dataset. Observations in Part 2 are split depending on whether the mizture was

degenerate or not.
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Figure A3: Proportion of Specified Observations per Participant (Slider treatment)
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Notes: The x-axis refers to the proportion of observations that are specified per each participant in
each part of the experiment (the weight at 1 is the proportion of participants that specified all of
their miztures in that part. The weight at 0 is the proportion of participants that specified none of
their miztures in that part). There is no weight at 0 for Part 1 because these participants were
filtered out of the main dataset. There is weight at 0 in Part 2 because some participants have
specified for degenerate miztures and not for non-degenerate mirtures, meaning that they were not

filtered out of the main dataset.

40



Table AT7: Specification and Consistency Rates for Observation Triplets

Slider Slider info Repeated choice

Specification Rate 0.881 0.894 0.742

All Specified 0.733 0.765 0.513

Part 2 Consistent (Weak)  0.619 0.616 0.59
Part 2 Consistent (Strong)  0.43 0.444 0.392
Convex Consistent 0.1 0.09 0.095
Stochastic Choice Consistent  0.462 0.434 0.425

Notes: This table provides statistics for the triplets a*(¢,0"), a* (£, m*(¢,£")) and a*(¢';m*(¢,0)).
Triplets containing Part 1 degenerate mixtures are excluded. Specification Rate refers to the average
number of the three mizture weights that were specified. All Specified refers to the proportion of
triplets in which all three weights are specified. The remaining statistics concern observation
triplets that are fully specified. Part 2 Consistent (Weak) refers to the proportion of observations
where (a*(¢,m*(¢,¢")) — 0.5)(0.5 — a*(¢',m*(£,£'))) > 0. Part 2 Consistent (Strong) refers to the
proportion of triplets where (a*(¢,m*(€,¢')) — 0.5)(0.5 — a*(¢',m*(¢,£))) > 0 or

a*(l,m*(£,0) = a* (¢, m*(¢,0')) = 0.5. Convex Consistent refers to the proportion of triplets
where o*(€,m*(£,£')) < 0.1 and o* (', m*(£,£")) < 0.1. Stochastic Choice Consistent refers to the
proportion of triplets that satisfy (a*(¢,0) — 0.5)(a*(¢,m*(¢,£'))) > 0 and

(a*(£,0") — 0.5)(a* (¢, m*(£,0'))) > 0
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Table AS: Lotteries

Group $8 $9 $10 $11 $12 $13 $14 $15 $16 $17 $18 EV  Variance Support Size
1 00 00 05 00 00 00 05 00 00 00 00 120 4.0 2
1 0.0 025 00 025 00 00 05 00 00 00 0.0 120 4.5 3
1 0.0 00 05 00 00 025 00 025 0.0 00 0.0 120 4.5 3
1 0.0 025 00 025 00 025 0.0 025 0.0 00 0.0 120 5.0 4
1 00 04 00 00 00 00 06 00 00 00 00 120 6.0 2
1 02 00 02 00 00 00 06 00 00 00 0.0 120 6.4 3
1 00 04 00 00 00 03 00 03 00 00 0.0 120 6.6 3
1 02 00 02 00 00 03 00 03 00 00 0.0 120 7.0 4
1 00 05 00 00 00 00 00 05 00 00 00 120 9.0 2
1 04 00 00 00 00 00 00 06 00 00 00 122 11.76 2
1 03 00 01 00 00 01 00 05 00 00 00 122 9.76 4
1 04 01 00 00 00 00 00 02 03 00 00 119 13.89 4
2 00 00 00 00O 05 00 00 00 05 00 00 140 4.0 2
2 0.0 00 00 025 00 025 00 00 05 00 0.0 140 4.5 3
2 00 00 00 00 05 00 00 025 00 025 00 14.0 4.5 3
2 00 00 00 025 00 025 00 025 0.0 025 00 14.0 5.0 4
2 00 00 00 04 00 00 00 00 06 00 00 140 6.0 2
2 00 00 02 00 00 02 00 00 06 00 00 14.2 5.76 3
2 00 00 00 04 00 00 00 03 00 03 00 140 6.6 3
2 00 00 02 00 02 00 00 03 00 03 00 140 7.0 4
2 00 00 00 05 00 00 00 00 00 05 00 140 9.0 2
2 00 00 04 00 00 00O 00 00 00 06 00 14.2 11.76 2
2 00 00 03 01 00 00 00 01 00 05 00 141 10.29 4
2 00 00 03 01 01 00 00 00 00 03 02 140 12.0 b

Notes: Table shows the structure and characteristics of each of the 24 lotteries used in the

experiment. Group refers to the group that the lottery belongs to (either EV12 or EV1}). $i shows

the probability of receiving $i in that lottery. EV stands for expected value. Support Size refers to

the number of unique outcomes that may occur with strictly positive probability.
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A4 Screenshots

A4.1 Decision Screens

Question Number 10 of 24

Time before you can proceed: 0

Lottery A Your Preferred Lottery B
Lottery
$10 [ 40%
$12 [N 50%
$16 N 50%
$17 N s0%

[ Choose your Preferred Lottery J

[ Don't Choase your Preferred Lottery, Proceed Immediately to Next Question J

Figure A4: Decision Screen 1, Slider, Slider Info and Repeated Choice
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Question Number 10 of 24

Time before you can proceed: 0

Lottery A Your Preferred Lottery B
Lottery
$10 [ 8% $10 (0 40%

s12 I 0% $12 [N 40%

$16 I 50% s16 (D 40%
$17 [ 12% 17 [N 60%

Proceed to Next Question

Figure A5: Decision Screen 2, Slider and Slider Info
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Question Number 6 of 24

Time before you can proceed:

Lottery A Lottery B
$8 20%
s10 [0 20% s10 [0 20%
s12 [ 20%
$14 60%
$15 30%
$17 [N 30%
Answer 1: Lottery A
Answer 2: Lottery A
Answer 3: Lottery A
Answer 4:
posver
prsver
prsver 7
prsver
prsver
posver 1

Proceed to Nest Quaston

Figure A6: Decision Screen 2, Repeated Choice

45



A4.2 Consent and Instructions

Consent

Thisisa form for participation. It contains important information
about this study and what to expect if you decide to participate.

Your participation is voluntary. Please consider the information carefully. If you decide
to participate, please feel free to save or print 2 copy of this form.

Description: The experiment you are participating in today is part of a research study on
decision making. You will be asked to complete 24 guestions.

Risks and Benefits: The risks invoived in this study are not substantially different from
participating in normal online activities. We cannot and do not guarantee or promise that you
will receive any benefits from this study. Your participation may benefit society by improving
our understanding of behavior. Your decision whether or not to participate in this study will
not affect your relationship with Caltech.

Duration: Your participation in this experiment will take approximately 30 minutes,

Payments: You will receive a fixed $5.5 completion payment for finishing the experiment.
You may receive an additional payment (ranging between $8 and $18, with an average of
approximately $13) which will depend partly on your decisions and partly on luck.

Subjects’ Rights: Your participation is voluntary, and you have the right to discontinue
participation at any time without penalty or loss of benefits to which you are otherwise
entiled. The altemative is not to participate. You have the right to refuse to answer particular
guestions. The results of this research study may be presented at scientific or professional
meetings or published in scientific journals. Your individual privacy will be maintained in all
published and written data resulting from the study.

To exerdse yeur rights, please use the contact information below to submit a request. When
you submit a request, please indicate your name, the name of this project, your reasons for
making the request, if necessary, and other details you think will be useful for us to comply
with your request. You may be asked to provide identification to establish and confirm your
identity.

Contacts and Questions: For questions, concerns, or complgints about the study you may
contact the Protocol Director, Jack Adeney (e-mail- jadeney@caltech.edu) in the Division of
Humanities and Social Sdences.

Independent Contact: If you are not satisfied with how this study is being conducted, or
if you have any concerns, complaints, or general questions about the research or your rights
as a participant, please contact the Caltech Institutional Review Board (IRB) to speak to
someone independent of the research team. The contact information is as follows;

Committee for the Protection of Human Subjects — Institutional Review Board
California Institute of Technology

1200 East California Blvd.

Pasadena, California 91125

Phone: 626-395-8448

Email: irb@caltech.edu

Your consent is entirely vol ¥, but dedining to provid will make
you ineligible to participate in this project.

By clicking Yes below, you indicate that you have read and understood how your personal
data will be processed, your related rights, and that you consent to the processing of your
data as provided in this document, which may include health and other sensitive personal
data. In addition, you acknowledge that this information was explained to you, your questions
have been answered, and that you wish to continue participating in the study. If any new
guestions arise, you can contact the research team using the information provided above. You
may print a copy of this form for your files.

Do you want to participate in this study?
Yes
No

Pleasa enter your Prolific ID:

] oot b

Figure A7: Consent Page
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Instructions (page 1 of 5)

This study consists of 24 questions.

In each question you will be shown two lotteries. These lotteries will be represented in a list
format, where the payment is represented on the left and the chance of the payment is
represented at the end of the bar. An example of a lottery that you will see is given below.

Example Lottery

$3 [ 20%
$6 20%
s9 [ 30%
$12 30%

Figure A8: Instructions Page 1.a
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The example lottery above has four payoffs:

+ $3 with 20% chance
« $6 with 20% chance
e $9 with 30% chance
« and $12 with 30% chance

Figure A9: Instructions Page 1.b
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Instructions (page 2 of 5)

As mentioned before, each question screen will present you with two lotteries. The screen
below demonstrates how these lotteries will be presented.

Lottery A Your Lottery B
Preferred
$6 50% Lottery $6 50%
s8 I 40%
$9 @ 20%
$12 30%
$16[) 10%

Lottery A (left-hand side) has three possible payments: $6 with 50% chance, $9 with 20%
chance, and $12 with 30% chance.

Lottery B (right-hand side) also has three possible payments: $6 with 50% chance, $8 with
40% chance, and $16 with 10% chance.

Figure A10: Instructions Page 2.a
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However, you will not be paid based on one of the two lotteries. Instead, you
will be allowed to construct your own lottery using a slider at the bottom of
the screen. To see how this works, please click 'Next' below.

Figure A11: Instructions Page 2.b

Instructions (page 3 of 5)

The slider will appear underneath the two lotteries, and you can see an example in the black
box below. The middle panel, titled "Your Preferred Lottery' will represent the combination
that you have inputted using the slider.

In order to use the slider, you can click on the grey bar. The position of the slider will be

illustrated by a blue dot along the grey bar. You can click on the grey bar in order to move the
slider as many times as you like.

Figure A12: Instructions Page 3.a, Slider and Slider Info
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Lottery A Your Preferred Lottery B

Lottery
$6 50% $6 50%
$8 [N 40%
$9 D 20%
$12 30%
$16[ 10%

Figure A13: Instructions Page 3.b, Slider and Slider Info
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The slider allows you to change the combination of Lottery A and Lottery B
that make up your preferred lottery.

For example, if you slide the slider entirely to the left (where the numbers state 10 on the left
and 0 on the right), then your preferred lottery will be identical to Lottery A. Conversely, if
you slide the slider entirely to the right (where the numbers state 0 on the left and 10 on the
right), then your preferred lottery will be identical to Lottery B.

If you decide to set the slider somewhere in the middle, then your preferred lottery will be
constructed according to the combination associated with the slider position.

Please take some time to move the slider over different positions. This will allow you to see
how your preferred lottery varies as you move the slider.

Figure A14: Instructions Page 3.c, Slider and Slider Info
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Instructions (page 3 of 5)

In each question, you will be shown two lotteries. They will be labelled
‘Lottery A’ and 'Lottery B'. Below the lotteries, you will be asked to choose your
preferred lottery 10 times.

Please click 'Next' to see an example.

Lottery A Lottery B

$6 50% %6 50%

s8N 40%
$9 I 20%

$12 30%

s16 [ 10%
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Please feel free to dick on the "Lottery A’ and 'Lottery B' buttons to become familiar with how
they work.

Once you have chosen a lottery for each answer, you can submit your answers and procesd
to the next question by clicking the "Proceed to Next Question’ button at the bottom of the
SCreen.

MNext

Figure A16: Instructions Page 3.b, Repeated Choice

Instructions (page 4 of 5)

As well as being allowed to set your lottery, you will also be allowed to move on from the
question without specifying your preferred lottery. If this is the case, then a pre-specified, yet
undisclosed lottery will be automatically selected for you.

The computer's chosen lotteries have been pre-determined at the beginning of the session
before you begin answering any questions. You will not be told which have been selected.

Figure A17: Instructions Page 4.a, Slider and Slider Info

In order for you to make this decision, you will be shown the screen below. This screen will
appear below the lotteries for every question. If you wish to specify your preferred lottery,
then you can click the 'Choose your Preferred Lottery' button and the slider will appear for
you to construct your lottery. If you wish to use a pre-determined lottery, then you can click
the 'Don't Choose your Preferred Lottery, Proceed to Next Question' button, and you will
proceed to the next question.

Choose your Preferred Lottery

[ Don't Choose your Preferred Lottery, Proceed Immediately to Next Question J

Figure A18: Instructions Page 4.b, Slider and Slider Info
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The setup is designed so that you have to wait 10 seconds before progressing to the next
question. This minimum wait time is the same regardless of which button you select.

Figure A19: Instructions Page 4.c, Slider and Slider Info

Instructions (page 4 o 5)

As well as being allowed to specify your 10 answers, you will also be allowed to move on
from the question without specifying your answers. If this is the case, then a pre-specified,
yet undisclosed lottery will be automatically selected for you.

The computer's chosen |otteries have been pre-determined at the beginning of the session
before you begin answering any questions. You will not be told which have been selected.

Figure A20: Instructions Page 4.a, Repeated Choice

In order for you to make this decision, you will be shown the screen below. This screen will
appear below the lotteries for every question. If you wish to choose your preferred lottery or
lotteries, then you can click the 'Choose your Preferred Lottery/Lotteries' button and
the "Lottery A' and 'Lottery B' buttons will appear for you to make your selection.

If you wish to use the pre-determined choices, then you can click the 'Don't Choose your
Preferred Lottery/Lotteries, Proceed to Next Question' button, and you will
proceed to the next guestion.

hoose your Prefermed Lottery/Lotteries

[ Don't Choase Your Preferred Lottery/Lotteries, Proceed Immediately to Mext Questian ]

Figure A21: Instructions Page 4.b, Repeated Choice
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The setup is designed so that you have to wait 10 seconds before progressing to the next
guestion. This minimum wait time is the same regardless of which button you select.

Figure A22: Instructions Page 4.c, Repeated Choice

Instructions (page 5of 5)

Payments:

You will receive a participation fee of $5.5. In addition to this, one in five participants
will have the opportunity to earn a bonus payment. Details of how this bonus
payment is decided are given below:

1. If you are selected for bonus payment, one of the questions that were shown will be
selected at random.

2. In this question, you may have either chosen to specify your preferred lottery, or
chosen not to specify your preferred lottery.

o If you chose to specify your preferred lottery for that question, the
computer will simulate your preferred lottery that you selected, and you will be
paid a bonus payment according to an outcome from that lottery.

o If you chose not to specify your preferred lottery for that
question, the computer will simulate the pre-specified lottery that
corresponds to that question, (this is the same pre-specified lottery that was
described on the previous page). You will then be paid a bonus payment
according to an outcome from that lottery.

3. You will also answer two comprehension questions at the end of the study. These
questions may also be selected for bonus payment. If you get the selected
comprehension question correct, you will be paid a bonus payment of $5. If you get it
wrong, you will receive a bonus payment of $0.

4. Because any of your questions could be selected for bonus payment, it is important to
answer truthfully and accurately.

Whether you were selected for bonus payment, the bonus question, the bonus answer, and
the pre-specified lotteries were all determined at the beginning of the session before you
answered any questions.

Figure A23: Instructions Page 5.a
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A4.3 Quiz and Comprehension Pages

Understanding Questions (page 1 of 2)

Example Lottery

$4 [ 10%

$9 (N 60%

$17 [ 30%

The example lottery above has three different payoffs.

What are the three different payoffs?

Q

$10, $60, and $30

Q

$4, $9, and $17

(8]

$4, $8, and $17

Figure A24: Quiz 1.a
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Understanding Questions (page 1 of 2)

Example Lottery

s4 [ 10%

$9 (NN s0%

$17 [ 30%

The example lottery above has three different payoffs.
What is the chance that this lottery pays you $4?
o 0%

o 60%

o 10%

Figure A25: Quiz 1.b
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Understanding Questions (page 1 of 2)

Example Lottery

$4 [ 10%

$9 N 50%

$17 [ 30%

The example lottery above has three different payoffs.

What is the chance that this lottery pays you $9?

(e}

50%
70%

60%

Figure A26: Quiz 1.c
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Understanding Questions (page 1 of 2)

Example Lottery

$4 B 10%

$9 (N c0%

$17 [ 30%

The example lottery above has three different payoffs.

What is the chance that this lottery pays you $17?

30%
50%

0%

Figure A27: Quiz 1.d
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Understanding Questions (rage 2 o 2)

Imagine an individual is facing the following task:

Lottery A Preferred Lottery B
Lottery
$6 50% $6 50%
s8 [N 40%
$9 [ 20%
$12 30%
$16 [JJ 10%

And suppose their preferred lottery is exactly an equal combination of Lottery
A and Lottery B. Where would they set the slider below? Please click 'Next' to
submit your answer.

Figure A28: Quiz 2.a
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Understanding Questions (page z of 2)

Imagine an individual is facing the following task:

Lottery A Preferred Lottery B
Lottery
$6 50% $6 50%
ss [N 40%
$9 [ 20%
$12 30%
$16 [J] 10%

Suppose instead that their preferred lottery is exactly equal to Lottery A.
Where would they set the slider below? Please click 'Next' to submit your answer.

Figure A29: Quiz 2.b
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Understanding Questions (rage 2 of 2)

Imagine an individual is facing the following task:

Lottery A Lottery B
$6 50% $6 50%
s8¢ [N 40%
so I 20%
$12 30%
s16 [ 10%

And suppose their preferred lottery is Lottery A. Which button would they click
below? Please click "Next’ to submit your answer.

Figure A30: Quiz 2.a, Repeated Choice
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Understanding Questions (page 2 or 2)

Imagine an individual is facing the following task:

Lottery A Lottery B
%6 50% $6 50%
ss [N 40%
so [ 20%
$12 30%
s$16 [ 10%

Suppose instead that their preferred lottery is Lottery B. Which button would
they dlick below? Please dick 'Next' to submit your answer.

Figure A31: Quiz 2.b, Repeated Choice
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Comprehension Task (page 1 of 2)

Suppose an individual is selected for bonus payment, and they provided the below answer to
the bonus question.

Bonus Question Answer:

Lottery A Preferred Lottery B
Lottery

s10 00000 40% $10 [ 45% s10 I 50%

$12[ 10% $12[ 5%
$15 50% $15 25%
$16 [l 25% s16 N 50%

What is the chance that the individual receives a bonus payment of $15?
50%
25%

45%

Figure A32: Comprehension 1, Slider and Slider Info
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Comprehension Task (page 2 of 2)

Suppose an individual answered a question by constructing the following preferred lottery:

Lottery A Preferred Lottery B
Lottery

s12 0 40% $12 [N 40%
$1300 20%
$14 30%

s16 N 50%
s170 60%  $17 D 60%

Please set the slider below so that it corresponds to the preferred lottery
shown above. (In other words, how would the individual have set the slider in order to
make this preferred lottery?)

Please click 'Proceed' to submit your answer.

Figure A33: Comprehension 2, Slider and Slider Info
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Comprehension Task (page 1 or 2)

Suppose an individual is selected for bonus payment and they provided the above answer to
the bonus question.

Bonus Question Answer:
Lottery A Lottery B
$10 [N 40% $10 [ s50%
$12 [ 10%
$15 50%

s16 N 50%

the individual ps

Answer 1: Lottery A Lottery B

g
IIg
a

Answer 2: Lottery A Lottery B

Answer 3: Lottery A

B
-

Answer 4: Lottery A

&
E!

Answer 5: Lottery A
Answer 6: Lottery A

Answer 7: Lottery A

,_
g
]
-

Answer 8: Lottery A

B
:

3
3
ES

-

B

3

=

B
IE

Answer 9: Lottery A

Answer 10: Lottery A Lottery B

And Answer 4 was chosen for bonus payment.

‘What is the chance that the individual receives a bonus payment of $10?
50%
40%

10%

Figure A34: Caption
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Comprehension Task (rage 2 orz)

Suppose an indeidual was dending between the following two |otheries:

Lottery A Lottery B
$12 [N 40%
$13 [ 20%
$14 0%

s15 I sov
$17 I 0%

Suppose they selected the following lobieny for al 10 answers:

Preferred Lottery

$13 [ 20%

s15 [N S50

Howr did they fill in the following set of answers?

Answer 1z
Angwer 22
Angaer 3z
Angeer 4:
Angwer 52
AnEaer G2
Answer 7
Anseer 82
Angeer 9

Anseer 10:

Fiease chck 'Proceed” ko submit your answer.

Figure A35: Caption
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A4.4 Break and Proceed Pages

Break!

Can you spot the animal camouflaged in the image below? Please click on the photo where

you think the animal is located and then dlick Reveal.

This task does not affect your payment and is just for fun.

This photo was pu'blished on USA Today
(https://ftw.usatoday.com/2019/10/can-you-find-these-well-hidden-
animalsf4)

Figure A36: Break Page Example

Proceed to Understanding Questions

You will now be asked to answer some short understanding questions. Once you have
successfully completed these questions, you will be able to progress to the main study.

Please click the 'Proceed to Understanding Questions' button below.

Proceed to
Understanding

Questions

Figure A37: Proceed Page 1
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Proceed to Main Questions

Thank you for answering the understanding questions. You will now proceed to the main
study questions.

Please click the 'Proceed to Main Questions' button below.

Proceed to Main
Questions

Figure A38: Proceed Page 2

Proceed to Comprehension Questions

You have now completed the main questions. Please click 'Proceed to Comprehension
Questions' below.

Proceed to
Comprehension
Questions

Figure A39: Proceed Page 3
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