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Abstract

Economic concerns for equity have motivated game theorists to
study envy-free mechanisms. Though not incentive compatible, these
mechanisms implement in Nash equilibria efficient allocations at which
no agent prefers the consumption of any other agent to their own. In
experimental allocation decisions between two players, an envy-free
first-price auction achieves similar efficiency and far greater no-envy
than ultimatum bargaining. Both unsophisticated subject bidding
and coordination failure are responsible for the departure from Nash
equilibrium behavior in the envy-free auction, as bidding strategies
vary greatly among subjects. Quantal response equilibrium and level-
! models can explain most of this subjects bidding behavior.

JEL classification: D63, C72, C91
Keywords : experimental economics; no-envy; mechanism design;

behavioral game theory.

1 Introduction

This paper experimentally evaluates an “envy-free” first-price-auction-type

mechanism, which we refer to simply as a first-price auction, for the alloca-

tion of a social endowment of indivisible goods when monetary compensation

is possible. In an experimental setting this first-price auction achieves simi-

lar efficiency and greater no-envy than ultimatum bargaining. We document
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how experimental outcomes differ from the Nash equilibrium prediction for

the first-price auction. Then, we identify subjects unsophisticated bidding

as an important source for these deviations. Finally, we derive policy im-

plications from these results. In particular, we identify the non-strategic

equivalence of envy-free mechanism when subjects are boundedly rational,

which calls for the design of an optimal envy-free mechanism.

An envy-free allocation is that in which no agent prefers the allotment

of any other agent to her own. To some extent these allocations provide

all agents with equal opportunity to benefit from resources. They are de-

sirable outcomes in situations in which all agents have equal rights over the

resources but their preferences may differ (Foley, 1967; Varian, 1974; see

Thomson, 2006 for a survey).1 In our model, each envy-free allocation is

efficient (Svensson, 1983).

We are interested in envy-free mechanisms for the allocation of indivisible

goods and money. We have in mind situations like the allocation of the

rooms and the division of the rent among house-mates who collectively lease

a house. Since rooms may differ, then agents’ preferences over bundles of

rooms and rent may differ as well. It is known that under general conditions

on preferences there are envy-free allocations for each such a situation (Alkan

et al., 1991; see Velez (2011a) for a domain restriction that guarantees the

existence of envy-free allocations in which each agent contributes a non-

negative amount to rent).2 Moreover, a rich family of mechanism doubly

implement, in Nash and strong Nash equilibria, the correspondence that

selects all envy-free allocations (Tadenuma and Thomson, 1995a; Āzacis,

2008; Beviá, 2010; Velez, 2011b; Fujinaka and Wakayama, 2011). Our first-

price auction belongs to this family.

We test the extent to which these theoretical predictions are obtained

in the laboratory. That is, each agent’s ability to manipulate our first-price

auction is limited by the others and as a result, only envy-free allocations en-

sue. Additionally, we test an alternative mechanism, ultimatum bargaining,

which provides a non-envy-free benchmark. To our knowledge no previous

experiments have analyzed the performance of envy-free mechanisms.3

1Let us emphasize that equal rights across agents precludes situations in which agents
differentially contributed to the production of the resources to divide.

2Existence of envy-free allocations holds for domains that include other regarding pref-
erences Velez (2011b).

3Herreiner and Puppe (2009) investigate whether envy-free allocations are outcomes
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We obtain experimental results from two sessions, one using our first-

price auction and the other using ultimatum bargaining. From a large group

of subjects we randomly divided subjects into pairs and had them use each

mechanism with five distinct “valuations” for ten periods each (groups were

formed each period). Our results suggest that the ultimatum bargaining is

slightly superior in efficient allocations realized, but the first-price auction

achieves a much greater number of envy-free allocations and higher earnings

per round for subjects.

That being said, the performance of the first-price auction differs from

the theoretical predictions—envy-free allocations are achieved less than half

the time, and efficient outcomes occur 72 percent of all outcomes. We exam-

ine two possible explanations for this disparity. Since the auction mechanism

takes simultaneous bids, players may not coordinate on a Nash equilibria.

Alternatively, players due to bounded rationality, may submit non-Nash

bids or try to exploit those who do. Our evidence suggests that we cannot

rule out any of these effects as the cause for the deviations from equilib-

rium. However, a special configuration of valuations for which coordination

is trivial, allows us to conclude that players’ unsophistication is an important

issue. We use both the quantal response equilibrium (McKelvey and Palfrey,

1995, 1998) and a variation of the level-! model applied to auctions (simi-

lar to Crawford and Iriberri, 2007) to characterize unsophisticated subject

bidding.

Our results have consequences for the design of an optimal envy-free

mechanism, i.e., a mechanism that maximizes the probability to achieve an

envy-free allocation. We observe that given the non-Nash bidding of sub-

jects, the number of envy-free and efficient outcomes of an envy-free mecha-

nism may differ from one mechanism to the other. This is in contrast to the

outcome equivalence under the Nash equilibrium prediction. Our prelimi-

nary analysis indicates, that a greater number of envy-free outcomes could

be achieved with an auction other than our first-price auction. Section 6

summarizes these ideas and provides suggestions for further research.

The remainder of the paper is organized as follows. Section 2 introduces

from an “infinite proposals” bargaining with time limit. They document that this mecha-
nism achieve few envy-free allocations. The main difference with our study is that the Nash
equilibrium (and subgame perfect Nash equilibrium) outcomes of this infinite bargaining
procedure are generally non-envy-free.
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our model and the mechanisms we study. Section 3 presents our experimen-

tal design. Section 4 describes alternatives to rationalize behavior in our

experiments. Section 5 presents our data and analysis. Section 6 discusses

our results. Section 7 concludes.

2 Model

In this section we introduce our model and the mechanisms the we experi-

mentally study.

2.1 Environment

There are two agents " ≡ {1, 2} who are collectively endowed with two

objects {$,%}. Each agent consumes an object and an amount of money.

Consumptions of money should add up to zero. An allocation is a list of two

bundles & ≡ (', () where ' ≡ ('!, '") is a pair of transfers of money that add

up to zero and ( is a bijection from " to {$,%}. The agent who receives

object $ transfers '! to the agent who receives object %. Symmetrically,

the agent who receives object % transfers '" to the agent who receives

object $. Thus, '! + '" = 0. In different words, the amount of money

consumed by the agent who receives object $ is −'! and the amount of

money consumed by the agent who receives object % is −'". Agent 1’s

consumption at & is &1 ≡ ('#(1), ((1)). Analogously, agent 2’s consumption

at & is &2 ≡ ('#(2), ((2)). The set of allocations is ). Agents’ true preferences

are quasi-linear

*01(&) ≡ −'#(1) + +01($)1#(1)=! + +01(%)1#(1)=" ,

*02(&) ≡ −'#(2) + +02($)1#(2)=! + +02(%)1#(2)=" .

In order to reduce the dimension of the strategy space, we assume that4

+01($) = +02($) = 100.

4This assumption is without of loss of generality. Since each agent has to receive
one object, then the possibility of receiving money and no object is precluded. Thus,
!01(") = !01(#) = 100 is a normalization.
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We assume that this information, except the values of +01(%) and +02(%), is

known to the mechanism designer.

A mechanism is a pair ⟨-1 ×-2, .⟩ in which -1 and -2 are message

spaces and . : -1×-2 → ) is an outcome function. The game induced by

⟨-1×-2, .⟩ and the true preference profile *0 is ⟨-1×-2, ., *0⟩. The set

of Nash equilibrium and pure-strategy Nash equilibrium outcomes of this

game are )⟨-1 ×-2, ., *0⟩ and )$⟨-1 ×-2, ., *0⟩, respectively.

A solution is a function that associates with each preference profile an

allocation in ). Since each agent’s preferences are determined by the agent’s

valuation of object %, then a solution, generically denoted by ., can be seen

as a function
. : ℝ× ℝ → )

+ ≡ (+1(%), +2(%)) *→ .(+).

A solution . induces a direct revelation mechanism in which each agent’s

strategy space is her preference space and the outcome function is the solu-

tion itself, i.e., ⟨ℝ ×ℝ, .⟩.

2.2 Properties

We consider two properties of allocations. The first, no-envy, requires that

no agent prefer the consumption of the other agent to her own (Foley, 1967;

Varian, 1974). Formally, & ∈ ) is envy-free for * if *1(&1) ≥ *1(&2) and

*2(&2) ≥ *2(&1). The set of envy-free allocations for * is / (*). The second

property, efficiency, is defined as usual. An allocation & ∈ ) is efficient for *

if there is no other &′ ∈ ) that is weakly preferred to & by both agents and

strictly preferred to & by at least one agent. Since there is at least as many

agents as objects in our model, then each envy-free allocation is efficient

(Svensson, 1983).

We now characterize the set of envy-free allocations. We assume without

loss of generality that +1(%) ≤ +2(%). There are two cases.

Case 1: +1(%) < +2(%). Let & ≡ (', () ∈ / (*). Since each envy-free

allocation is efficient, then ((1) = $ and ((2) = %. Since *1(&1) ≥ *1(&2),

then −'! + +1($) ≥ −'" + +1(%). Since, '! + '" = 0, then

'" ≥
+1(%)− +1($)

2
.
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Since *2(&2) ≥ *2(&1), then −'" + +2(%) ≥ −'! + +2($). Moreover, since

'! + '" = 0, then

'" ≤
+2(%)− +2($)

2
.

Under our normalization +1($) = +2($) = 100, these restrictions become

+1(%)− 100

2
≤ '" ≤

+2(%)− 100

2
. (1)

Conversely, one can easily see that if ((1) = $, ((2) = %, and ' satisfies (1),

then & ≡ (', () ∈ / (*).

The difference between the maximal and minimal amount transferred

at an envy-free allocation, intuitively measures the size of the set of these

allocations (Tadenuma and Thomson, 1995a). In our model this difference,

which we refer to as the equity surplus, is exactly

1.(*) ≡
+2(%)− +1(%)

2
.

Case 2: +1(%) = +2(%). One can easily see that & ≡ (', () ∈ / (*) if and

only if '" = %2(")−%2(!)
2 . Thus, when agents have identical preferences, the

amount of money received by the agent who receives object % in a envy-free

allocation is uniquely determined. Of course, the amount of money received

by the agent who receives object $, '! = −'", is uniquely determined too.

Let us remark that in this case the equity surplus is zero and no restriction

is imposed in the allocation of objects.

Fig. 1 provides a geometric interpretation of the equity surplus and the

set of envy-free allocations for all possible valuations configurations.

It follows from our characterization that a solution that selects envy-

free allocations is defined by: (i) the agents’ consumptions of money when

+1(%) ∕= +2(%) (allocation of objects is unique in Case 1), and (ii) the allo-

cation of objects when +1(%) = +2(%) (consumptions of money are unique

in Case 2).

2.3 Mechanisms

We are interested in mechanisms that implement envy-free allocations. In

this section we introduce two mechanisms. The fist is a first-price-auction-

type mechanism for which Nash equilibrium predicts it achieves our goal.
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Figure 1: Equity surplus and non contestable allocations: Panels (a), (b), and (c)
display the possible transfers for the agent who receives object # in an envy-free allocation
when: (a) 100 ≤ !1(#) ≤ !2(#), (b) !1(#) ≤ 100 ≤ !2(#), and (c) !1(#) ≤ !2(#) ≤ 100.
The maximal and minimal transfers of money at an envy-free allocation for the agent that
consumes object # are "2(!)−100

2 and "1(!)−100
2 , respectively. The equity surplus is the

difference between these two amounts (the distance between the points displayed on axis
$!).

The second is an ultimatum-bargaining mechanisms for which the subgame-

perfect Nash equilibrium predicts the opposite.

2.3.1 First-price auction

Our first mechanism is a first-price-auction-type mechanism in which agents

report bids (possibly negative) for object %. Bid 2 is interpreted as the

amount of money that they are willing to transfer to (or receive from) the

other agent in order to receive object %. Then an agent with the highest bid

receives object % and pays her bid, say 2 (thus her consumption of money

is −2). The other player receives object $ and 2. In case of a tie, an agent

with highest true valuation of object % receives object % and pays her bid.

Recall that without loss of generality we assume that +01(%) < +02(%).

Formally, this mechanism is ⟨ℝ × ℝ,/⟩ where given reports 2 ≡ (21, 22), /

recommends /(+) ≡ (', 3) where ' ≡ ('!, '") and 3% : " → {$,%} are given

by:

'! ≡ −max{21, 22} and '" ≡ max{21, 22},

and
3(1) ≡ $ and 3(2) ≡ % if 21 < 22,

3(1) ≡ % and 3(2) ≡ $ if 21 > 22,

3(1) ≡ $ and 3(2) ≡ % if 21 = 22.

(2)

Let us remark that the mechanism selects an efficient allocation for true

preferences when agents reports are identical. True preferences are available

to the mechanism designer in the lab environment. If this information were

not available, one would have to enlarge the agents’ strategy space in order
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to define a solution with efficient Nash equilibrium outcome correspondence

(see Tadenuma and Thomson, 1995b, Beviá, 2010, Velez and Thomson, 2009,

and Velez, 2011a).5

Our auction mechanism is strategically equivalent to the one induced by

the solution that selects the envy-free allocation that assigns the maximal

surplus to the agent who receives $. Formally, there is a bijection between

agent 5’s bid, 2&, and her possible valuations, +&(%) ≡ 100 + 22&. Thus, one

can think of an agent’s bid as the report of her preferences. Given report

(+1(%), +2(%)), / selects the envy-free allocation at which the agent with

highest valuation for % transfers the other agent max{%1("),%2(")}−100
2 .

min{%1, %2} max{%1, %2}
$!

min{"1(!),"2(!)}−100
2

max{"1(!),"2(!)}−100
2

(a)

%1 = %2
bids

min{"0
1
(!),"0

2
(!)}−100

2

max{"0
1
(!),"0

2
(!)}−100

2

(b)

Figure 2: First-price-auction-type mechanism: (a) given bids (%1, %2) this mecha-
nism selects an envy-free allocation at which the agent who receives object # makes the
maximal transfer among all envy free allocations for valuations (100 + 2%1, 100 + 2%2);
(b) in each the pure-strategy Nash equilibria of each game induced by the mechanism
both agents bid equal amounts in between the maximal and minimal transfers, $! , in an
envy-free allocation.

It is well known that the pure-strategy Nash equilibrium correspondence of

the mechanism induced by any selection from the envy-free set is itself envy-

free (Tadenuma and Thomson, 1995a,b; Beviá, 2010; Velez, 2011a; Fujinaka

and Wakayama, 2011). Thus, all equilibrium allocations of our first-price-

auction-type mechanism are envy-free. One can easily see that for each

envy-free allocation for the true preferences, & ≡ (', 3) ∈ / (*0), there is

an equilibrium with outcome & in which each agent bids '" . Thus, the

pure-strategy Nash equilibrium correspondence of our first-price-auction-

type mechanism is exactly the envy-free correspondence. That is, )$⟨ℝ ×

ℝ,/, *0⟩ = / (*0).

5For instance, one could require agents also report the object they request. If Case 2
is reached, then this information determines the allocation of objects.
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2.3.2 Ultimatum bargaining

Finally, we consider an ultimatum mechanism in which one agent,chosen

at random, say agent 1, is selected to propose an allocation & such that

*02(&2) ≥ 0. Then agent 2 accepts or rejects the proposal. They both receive

no object and no transfer of money if the proposal is rejected. One can easily

see that at each subgame-perfect equilibrium outcome of this mechanism,

agent 1 proposes an efficient allocation &∗ such that *02(&
∗
2) ≤ 1 and agent 2

accepts the proposal (for the true valuations considered in our experiments,

these allocations are not envy-free).6

The following table summarizes the theoretical properties of first-price-

auction-type and ultimatum-type mechanisms.

Mechanism Efficient Envy-free
First price auction + +

Ultimatum + −

Table 1: Theoretical properties of mechanism.

3 Experimental Design

This experiment implemented the theoretical environment described in sec-

tion 2.1. Subjects in groups of two chose how to allocate two indivisible

items with possible transfer payments. In all possible allocations, each sub-

ject would receive exactly one item.7.

All experiments were held at the Experimental Research Labratory (ERL)

in the Economics Department at Texas A&M University. Subjects sat at

computer terminals and made their decisions on software programmed in

the z-tree language (Fischbacher, 2007). Dividers were used to make sure

6A proposal such that '0
2((

∗
2) = 1 is strictly preferred by agent 2 to rejecting it. A

proposal where '0
2((

∗
2) = 0, could also be subgame perfect depending on the assumptions

made about agent 2’s actions when she is indifferent. There are a great number of Nash
equilibria for this mechanism that are not subgame perfect. Any strategy that player 1
offers could be a Nash equilibrium, provided player 2 would reject all proposals that offer
her a lower share than that strategy.

7In the case of ultimatum bargaining if a proposal was rejected each subject would re-
ceive nothing. However, all ultimatum proposals must have each subject receiving exactly

one item

9



anonymity of subjects was preserved. Subjects were 50 Texas A&M un-

dergraduates from a variety of majors, twenty-six subjects took part in the

ultimatum bargaining session on October 21, 2010; twenty-four subjects

took part in the envy-free first-price auction session on October 22, 2010.

Each period, subjects would receive points for acquiring either item,

equivalent to their valuation of that item. Thus, the values for each item

were induced valuations.8 They would also gain or lose points included in

any transfer payments imposed by the mechanism. Subject values for each

item were common knowledge to both subjects. Exactly as in our theoretical

environment (section 2.1), all valuations had identical subject values for item

A at 100 units, but most had different valuations for item B. Table 2 provides

a sample valuation.).

Player Value of Item A Value of Item B
Player 1 100 120
Player 2 100 80

Table 2: A sample valuation: In this valuation a player values item A at 100 and
item B at 120. As in our theoretical environment (Section 2.1, the other player whom she
is paired has the same valuation for item A, but values item B at only 80. Each player
has an equal chance of receiving the high value on item B for any period. Valuations are
common knowledge to both players.

Table 2 provides an example valuation, the third valuation used in the ex-

periments. In this case, both subjects have the same valuation for item A,

but their valuations for item B are different: player 1 has the high valua-

tion for item B (120 points), and player 2 has the low valuation for item B

(80 points). There were five total valuations used in the experiment. Each

valuation was used for 10 consecutive periods, for a total of 50 periods. For

any period, for each grouping of subjects, one subject would be randomly

assigned the high valuation on item B, the other would receive the low val-

uation. Thus a subject’s valuation could change for any period, but the

valuation structure (the two subject valuations for item B) would remain

the same for ten periods. For each of the five valuations, subjects always val-

ued item A at 100. In order of appearance, the pairing of subject valuations

for item B were (40, 80), (120, 160), (40, 120), (160, 160), and (0, 40).

8Alternatively, one could say each item had a redemption value for each subject.
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To avoid incentives associated with repeated play, subjects were ran-

domly re-assigned to each other at the beginning of each period. Subjects

were instructed that they would be randomly rematched each period, but

no identifying information (e.g., subject number) was disclosed to a subject

about their match in any round. Each period would begin with each subject

seeing the valuation for the period

3.1 Envy-free Auction Procedures

In the auction session, after observing the valuation for the period, subjects

would simultaneously submit their bids for item B. The subject with the

higher bid receives the item B, and the subject with the lower bid receives

item A. In the case of equal bids, the subject with the higher valuation of

item B receives item A.9 The subject who receives item B, then pays the

subject who receives item A the full amount of her bid. In this way, the

auction mechanism is a first-price auction. However, there is no restriction

that any bid must be positive. Bids were only restricted so that no bid could

be lower than the opposite of twice the value of item A (-200, always) and

no bid could be higher the twice the maximum value of item B (varies by

valuation, i.e, 160, 320, 240, 320, and 80 for each valuation, respectively).

After submitting a bid, each subject was allowed to submit a possible

value for the other players bid. The experimental software would then dis-

play the outcome (i.e., who gets which item, what amount is transferred for

each player, each players earnings for that period) that would occur with

those two bids as well as a table that showed all possibilities that could hap-

pen if the other player’s bid were below, equal to, or above the subject’s bid

(see Figure 3). After a subject viewed these possibilities, she could choose

to confirm her bid, or choose an alternate bid. If she chose an alternate

bid, the process would repeat again. The process would end when a subject

confirmed her bid.

After both subjects submitted their bids, they would be asked to guess

what they believed the other subject bid. If they guessed correctly they

would receive a small bonus of 5 points. The value of this bonus was de-

liberately chosen to be small, so that subjects would not alter their bidding

9In the case of the fourth valuation where both subjects value item B at 160, one
subject was randomly selected to win ties, this was known before bids were submitted
(i.e., ex-ante).
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Figure 3: Confirmation screen for subjects: Subjects have the option to review their bid
and the possible outcomes associated with it after submitting their initial bid.

strategy to receive the bonus. After both subjects submitted their guesses

they would see the outcome of their bidding. They would learn what the

other player bid, which items they both received, the transfer payment be-

tween them, their earnings, and their partners’ points earned. Subjects

would learn if they received a bonus for guessing the other player’s bid cor-

rectly, but would not learn if the other player had received the bonus for

guessing their bid correctly. After this information was disclosed, a new

period would begin. This process would continue for 50 periods.

3.2 Ultimatum Bargaining Procedures

In the ultimatum bargaining session, at the beginning of each period, one

subject would be randomly selected to be the proposer. That subject would

choose who would receive each item, and if any transfer payments should be
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paid from one subject to the other. Transfer payments were limited so that

no subject could receive negative earnings for each period (so, for example

in Table 2, player 1 cannot propose player 2 receive item A and pay player

1 a transfer payment of 101 points, because that would result in player 1

receiving negative earnings).

After one subject had made a proposal, she would see a table of possible

outcomes similar to figure 3 that would display the two possible outcomes

(i.e., who gets which item, what amount is transferred for each player, each

players earnings for that period) when the other subject accepted or rejected

her proposal. Note that in the case of rejection, the outcome would be that

each subject receives no items and no points for the period. The subject

would have the opportunity to confirm or try another proposal. If she chose

to try another proposal, the process would repeat until she confirmed a

proposal. Once a proposal was confirmed, the other subject would view the

proposal. The display would show him two outcomes—what would happen if

he chose to accept or reject the other subject’s proposal. The subject then

would have the opportunity to accept or reject the proposal. After that

decision was made, both subjects would view the outcome of the period.

They would see what the first player had proposed, whether that proposal

was accepted or rejected, the items and transfers received by each subject (if

applicable) and the points earned of each subject for the period. After this

information was disclosed, a new period would begin. This process would

continue for 50 periods.

3.3 End of Experiment Procedures

Once the 50 periods were complete. Subjects would complete four surveys

about their personality and preferences regarding fairness (see Appendix,

Section 2). Three of the surveys were commonly used psychological sur-

veys, the Barrat Impulsivity Scale (Patton et al., 1995), the Zuckermann

Sensation Seeking-Scale (Zuckerman, 1994), and a five-factor personality

assessment (John et al., 2008). The other survey asked subjects about their

opinions of the other players who they had been matched, the mechanism

used, and their general feelings of what fairness means. They were also

given the opportunity to provide a tip up to $5, that would be doubled and
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divided among all other subjects.10 Finally they were told they would play

one more period at a valuation 10 times greater than before. All subjects

then voted between the ultimatum and auction mechanisms. After all sub-

jects completed the vote, the winning mechanism was implemented for the

final period.11 Since only one mechanism was used per experimental session

a brief description was provided of the other mechanism. As carefully ex-

plained to the subjects a majority vote was required to change to the new

mechanism, meaning the status-quo won all ties.12

After the final period, point values were totaled and converted to cash

at the rate of 400 points=$1.00, rounded up to the nearest dollar. Subject

earnings ranged from $14.70 to $33.80 ($25.44 average earnings) $14.20 to

$33.80 ($26.40 average) for the ultimatum and auction sessions, respectively.

4 Applications of Nash Equilibrium, Quantal Re-

sponse Equilibrium, Level-! with Quantal Re-

sponse Models to our Auction Mechanism

Three different models may characterize the possible bidding strategies and

outcomes for the subjects with the auction mechanism. We summarize these

models in this section and discuss their possible issues in predicting subject

behavior with the auction mechanism.

4.1 Nash Equilibrium

As explained in section 2.3.1, the auction mechanism implements all envy

free allocation in Nash Equilibria. These equilibria exist on a continuum

defined by equation 1 where the points transferred by the player who acquires

item B, fall between
(

%1(")−100
2 , %2(")−100

2

)

. Table 3 displays the range of

equilibria, defined by the above interval, for each of the five valuations in

the experiment.

10Surveys and tips were not found to vary by mechanism nor were they correlated with
subject behavior.

11The results of this last period are not included in the data analysis.
12The status-quo won in both sessions though by a smaller margin in the ultimatum

session
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lowest
val.

item #

highest
val.

item #

lowest
possible
Nash
equil.
bid

higest
possible
Nash
equil.
bid

lowest
possible
bound-
rational

bid

highest
possible
bound-
rational

bid
val 1 40 80 -30 -10 -60 0
val 2 120 160 10 30 0 60
val 3 40 120 -30 10 -60 20
val 4 160 160 30 30 0 60
val 5 0 40 -50 -30 -100 0

Table 3: Characterization of Nash Equilibria with Auction Mechanism: For
the five valuations different continua of equilibria exist. Note that the symmetric fourth
valuation only has one equilibrium where each player bids 30. The region of “boundedly
rational bids” are defined in section 4.2.

4.2 Quantal Response Equilibrium

Developed in McKelvey and Palfrey (1995, 1998), the quantal response equi-

librium (QRE) model uses the concept of noisy best response to allow equi-

libria where players will not play the action that yields the highest expected

value with full probability. We may define such model in this context.

Let each player 5 have a set of possible bidding strategies .& and utility

*&(&(6&, 6−&)) where 6& ∈ .& is her strategy and 6−& ∈ .−& represents the

other player’s strategies. Using the logit specification with parameter 7, if

8((6, 7) denotes the probability player 9 plays strategy 6 ∈ .&. Then the

player’s noisy best response is to play strategy 6& with probability defined

as

8&(6&, 7) =
exp

[

7(1)−$∈*$
[*&(&(6&, 6−&))]

]

∑

)∈*$

exp
[

71)−$∈*$
[&(*&(6&, 6−&))]

]

=

exp

[

7
∑

)−$∈*$

8−&(6−&, 7)*&(&(6&, 6−&))

]

∑

)∈*$

exp

[

7
∑

)−$∈*$

8−&(6−&, 7)*&(&(6&, 6−&))

] (3)

For any 7 there exists a fixed point where equation 3 holds for both players.

That is, all players are noisily best responding to each other. As 7 → 0 the

system approaches each player uniformly randomizing over each action, as
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7 → ∞ the system approaches the Nash equilibrium as each player is best

responding to each other.
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Figure 4: QRE first-price-auction-type mechanism: valuations !01(#) = !02(#) =
160 with support [0, 60] and ) = 0.0645, 0.15, 0.30. Subject 2 is assigned object # with
probability one in case of a tie.

In parameterizing our models in later sections, we make assumptions

about the set of feasible bids, .&. Although subjects may enter bids from the

opposite of twice the value of item A (−200), to twice the highest valuation

of item B (varies by valuation, i.e., 160, 320, 240, 320, 80 for valuations

1–5), we restrict our models over a range of bids we define as “boundedly

rational”.

Definition 1. Consider 2 players bidding for items A and B. For each

player define the following set for each player:

:& = {2 : ;5<(+&(%)− +&($), 0) ≤ 2 ≤ ;=>(+&(%)− +&($), 0)}

Any bid, 2′ that falls in the union of each player’s set, 2′ ∈ :&
∪

:( is said

to be boundedly rational.
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Basically boundedly rational bidding restricts players to bid non-negative

amounts on item B if they prefer B to A and non-positive amounts for item

B if they prefer A to B. The one exception is best responding to the other

player may require one to violate the rule (e.g., a player prefers item B to A,

but bids −10 because she believes the other player will bid −11). To allow

this type of bidding as boundedly rational, we take the union of the two :&
sets created from each players preferences. Table 3 provides the ranges of

boundedly rational bids for each of the five valuations. Note that all Nash

equilibrium bids are boundedly rational.

Assumption 1. In both parameterizations of QRE and level-k with quan-

tal response we restrict the set of feasible bids, .& to those bids which are

boundedly-rational.

4.3 Level-! with Quantal Response

While not an equilibrium model, level-! models (Stahl and Wilson, 1994;

Nagel, 1995; Stahl and Wilson, 1995; Costa-Gomes et al., 2001; Costa-Gomes

and Crawford, 2006) allow agents in a population to have heterogeneous

levels of sophistication. Starting from level-0, each agent best responds

to the previous level, with higher levels achieving more sophistication and

ultimately converging to equilibrium. We apply a similar version of Crawford

and Iriberri’s (2007) continuous, level-! model to the auction mechanism.

Though we apply the model to a discrete choice setting as subjects can

only bid integer amounts. Their model also features a quantal response

parameter, allowing noisy-best-response across subjects. To begin any level-

! model, assumptions must be made about the level-0 types. We assume

that each level-0 plays all feasible strategies with equal probability. That is,

8&(6&, 7, 0) = 1/ ∣∣.&∣∣ .

All level-! types then noisily best respond to level-! − 1.

8&(6&, 7, !) =

exp

[

7
∑

)−$∈*$

8−&(6−&, 7, ! − 1)*&(6&, 6−&)

]

∑

)∈*$

exp

[

7
∑

)−$∈*$

8−&(6−&, 7, ! − 1)*&(6&, 6−&)

] (4)
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Mechanism Auction Ultimatum
efficient outcomes
(percent)!

437
(0.728)

500∗

(0.769)
envy-free outcomes"

(percent)
283

(0.472)
234∗

(0.360)
efficient and envy-free outcomes#

(percent)
283

(0.472)
134∗∗∗

(0.206)
average profit (in points)
(standard error)$

99.917
(1.111)

88.644∗∗∗

(1.731)
percent of maximum possible profit
(standard error)!

0.935
(0.005)

0.829∗∗∗

(0.014)
∗ significant difference at the 10% level.
∗∗ significant difference at the 5% level.
∗∗∗ significant difference at the 1% level.

Table 4: Outcomes of Auction and Ultimatum Mechanisms: Efficient, envy-free,
and profit values for each period in the auction and ultimatum experimental sessions.
a. There are 600 and 650 observations of subject-pairs for the auction and ultimatum
mechanism, respectively.
b. The 100 rejections (0 earnings for each player) are included in envy-free outcomes for
the ultimatum mechanism.
c. Only accepted, envy-free proposals would be both efficient, envy-free allocations in the
ultimatum mechanism (12 such proposals were rejected). All envy-free allocations are also
efficient with the auction mechanism.

Note that as ! → ∞, if this model converges it will converge to a quantal

response equilibrium of parameter 7.13

5 Data and analysis

5.1 Outcomes

Both the auction mechanism and ultimatum bargaining sessions consisted

of 50 periods. With 24 subjects and 26 subjects there are 1200 and 1300

subject choices in the auction and ultimatum sessions, respectively. Since

each subject was paired each round, this gives 600 and 650 unique outcomes

in each session.

Table 4 characterizes each of these outcomes for each session with the

auction and ultimatum mechanisms. Subjects using the ultimatum mecha-

13At higher values of ) (above 0.5) the model does not converge. Instead it cycles
between strategies. These high values were not encountered when characterizing subject
behavior.
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nism realized efficient outcomes at a higher frequency than those using the

auction mechanism (77 vs. 73 percent), albeit at a moderately significant

level (@-value≈ 0.095). Subjects using the auction mechanism achieved sig-

nificantly more envy-free outcomes, more profit per period, and a higher

percentage of the maximum profit possible than ultimatum bargaining (all

@-values< 0.01).

It should be noted that table 4 shows that envy-free proposals were

rejected at a much lower rate than proposals with envy. Note c states

that only 12 of 146 such proposals were rejected (92 percent acceptance)

as opposed to 100 of the 504 proposals (80 percent acceptance). However,

we cannot conclude that envy-free proposals are less likely to be rejected

since they are highly correlated with the amount the receiver acquires in

this setting. Thus it cannot be ascertained whether the receiver just accepts

higher offers and does not care about no-envy, or if she accepts offers with

no envy at higher rates.

The differences in the mechanisms likely explain the differing results in

Table 4. The ultimatum mechanism is a sequential mechanism and involves

less complex strategy than the simultaneous auction mechanism. Thus both

coordination failures and improper bidding in the auction mechanism may

reduce the efficiency of that mechanism relative to the ultimatum mechanism

(which of these two factors was responsible will be discussed later in this

section). However, the auction mechanism implements envy-free allocations

as Nash equilibria, which explains its higher level of envy-free allocations

achieved. Since the lowest combined earnings in the ultimatum mechanism

occur at rejection—where both players receive nothing (an outcome that

occurs 15 percent of the time)—as opposed to at an inefficient outcome

in the auction mechanism, it achieves much fewer outcomes that both are

efficient and envy-free, as well as lower earnings for both players. The equal-

opportunity property of the auction mechanism also leads to the greater

number of envy-free allocations.

Given that subjects using the auction mechanism achieved envy-free al-

locations less than half the time, and achieved efficiency less often than the

ultimatum mechanism, it is natural to investigate the causes of such per-

formance. One possibility is that subjects bid at Nash levels, but did not

coordinate on the same Nash equilibrium, leading to inefficient outcomes

with envy. Another possibility subjects did not bid at Nash levels, caus-
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valuation
(low val.,
high val.)

mean bid
(sandard error)

Nash bids
(percent)

boundedly
rational bids
(percent)%

val. 1&

(40,80)
−28.183
(2.395)

100
(0.417)

164
(0.683)

val. 2
(120,160)

3.704
(1.594)

114
(0.475)

143
(0.596)

val. 3
(40,120)

−13.158
(1.765)

200
(0.833)

220
(0.917)

val. 4
(160,160)

19.721
(0.894)

49
(0.204)

216
(0.900)

val. 5
(0,40)

−50.142
(2.491)

140
(0.583)

198
(0.825)

Totals
−13.162
(1.108)

603
(0.503)

941
(0.784)

Table 5: Subject Bidding by Type and Valuation: Proportion of bids that are
Nash or boundedly rational in each valuation.
a. See Table 3 for ranges of each type of bid by valuation.
b. Each valuation contains 240 bids.

ing the auction mechanism to achieve outcomes that were neither efficient

nor envy-free. One reason subjects might bid this way is that they do not

understand the mechanism fully, and do not make boundedly-rational bids

(see section 4.2 for the definition of “boundedly rational” in this context).

Tables 5 and 6 explore these questions further. Table 5 counts the num-

ber of Nash, boundedly rational, and other bids for each of the five valua-

tions. In all valuations, the mean bid is significantly lower than the lowest

Nash equilibrium bid.14 On average, subjects bid a Nash Equilibrium bid

only half the time. Bidding generally varies by valuation: valuation 4 which

has only one value corresponding to a Nash bid, has the lowest number of

Nash bids; valuation 3 which has a large Nash Equilibrium bid range, a

range which also contains 0 (the modal bid, and likely focal point) has the

highest number of Nash bids. Subjects generally make boundedly rational

bids (roughly 80 percent of the time). The figure greatly increases over the

last three valuations, indicating that subjects may be learning how to bid

better with experience.

Table 6 breaks down the efficient and envy-free outcomes by paired bid

types. The most noticeable result is that envy-free allocations do not occur

14This relationship is generally true for median bids (except in valuations 3 and 5)
indicating that a few outliers are not driving this result.
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event
frequency
(percent)

efficient
allocations
within
event

(percent)

envy-free
allocations
within
event

(percent)

2 Nash bids
162

(0.270)
126

(0.778)
126

(0.778)
1 Nash bid and 1 non-Nash
boundedly rational bid

128
(0.213)

77
(0.602)

59
(0.461)

1 Nash bid and 1 non-bound.
rational bid

151
(0.252)

111
(0.735)

98
(0.605)

2 non-Nash, boundedly
rational bids

66
(0.110)

63
(0.955)

0
(0.000)

1 non-Nash, bound. rational
bid and 1 non-bound.
rational bid

55
(0.092)

40
(0.727)

0
(0.000)

2 non-boundedly
rational bids

38
(0.063)

20
(0.526)

0
(0.000)

Totals 600
437

(0.728)
283

(0.472)

Table 6: Outcome by Type of Bids: The 600 outcomes of the auction mechanism
divided by bid type. See section 4.1 and4.2 for classification of Nash and boundedly
rational bids. All Nash bids are boundedly rational, therefore all bids can be divided into
the three categories with no overlap.

when both players fail to makes a Nash bid. This suggests that the lack

of Nash bidding (only about half of all bids) is largely responsible for the

low number of envy-free outcomes. When both players do Nash bid, they

achieve efficient, envy-free outcomes roughly 77.8 percent of the time, a

great increase in envy-free allocations. However, this number shows that

even when subjects bid ideally, coordination failure present in simultaneous

bidding does reduce the number of efficient outcomes by about 20 percent.

With the exception of 2 non-Nash, boundedly rational bids–where efficiency

is achieved in an astonishing 96 percent of outcomes–all other pairings of

bids have lower frequency of efficient outcomes being realized, suggesting

that lack of Nash bidding is also responsible for the reduction in efficient

outcomes of the auction mechanism.

It should be noted that selection does greatly influence the numbers in

table 6. Valuation 4 contained the fewest number of Nash bids (49 of 240)

and consisted entirely of efficient outcomes since all outcomes would turn
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out efficient regardless of bids. Of the 63 efficient allocations that occurred

with 2 non-Nash, boundedly rational bids, 55 were in valuation 4. This

means excluding valuation 4, only 8 of 11 cases of 2 non-Nash, boundedly

rational bids were efficient. So we must be careful interpreting numbers in

the table. In the next section we will parameterize subjects by their biding

strategy, and again look at outcomes by bidding types to determine the

effects of more sophisticated bidding by types (see table 9).
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Figure 5: Estimated QRE vs. empirical frequencies: valuations !01(#) = !02(#) =
160 with support [0, 60] and ) = 0.172.
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5.2 Classifying subject types

In this section we will characterize subject bidding behavior using the QRE

model (McKelvey and Palfrey, 1995, 1998) and level-! model applied to

auctions (similar to Crawford and Iriberri, 2007).

When analyzing bids, we will restrict our bids to integer values that fit

our definition of boundedly rational (see section 4.2). This restriction gives

us a finite number of bids in our feasible bid set, .&. We may assume that in

any period, player 2 has the high valuation on item B (or wins the tie-breaker

in the case of valuation 4). Then we will characterize .& for each player as

.& = (6&1 . . . 6&")+ where 6&1 and 6&, are the lower and upper boundaries

of boundedly rational bids for player 5 (see table 3 for such ranges for each

valuation). The using the QRE model, there exists a vector of probabilities,

8⃗&(.&, 7) = (8⃗&1(7) . . . 8⃗&, (7))+ for any 7 where 8⃗&(.&, 7) is the probability

of 6& ∈ .& being played by player 5 at a quantal response equilibrium with

parameter 7. Let B59 be a 10×" matrix that contains subject 5’s bids for

valuation 9. Specifically, matrix B59’s elements are of the form

>&(-. =

{

1 : if subject 5 bid 2- in the <′'ℎ period of valuation 9

0 : otherwise

Further, define ℎ&( as a 1×10 column vector that indicates (by a 1) whether

subject 5 in valuation 9 had the high or low value on item B for each of

the 10 periods in that valuation. Then we may construct the log likelihood

function for any 7 of each subject bidding the way they did over the five

valuations.

D(7) =
/

∑

&=1

5
∑

(=1

[B&( log [8⃗(.2, 7)] ℎ&( +B&( log [8⃗(.1, 7)] (1− ℎ&()] (5)

Table 7 provides maximum likelihood values of 7 for each valuation and

over all valuations. The overall maximum likelihood value is 7 ≈ 0.040.

One reason the QRE estimates appear so smooth relative to the spikes

observed i the data is that they are unable to classify subjects by types. We

alleviate this limitation by using a level-k model with quantal response to
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Valuations
best-fitting 7

(standard error)
log likelihood

boundedly
rational bids
(percent)

val. 1 0.012*** -747.33 164
(40, 80) (6.23E-05) (0.683)
val. 2 0.092*** -674.348 143

(120, 160) (5.76E-05) (0.596)
val. 3 0.018*** -980.382 220

(40, 120) (4.50E-05) (0.917)
val. 4 0.172*** -850.963 216

(160, 160) (2.19E-05) (0.900)
val. 5 0.027*** -1018.43 198
(0, 40) (4.99E-05) (0.825)

aggregate 0.040*** -4368.81 941
estimation (6.23E-05) (0.784)

∗ significant difference at the 10% level.
∗∗ significant difference at the 5% level.
∗∗∗ significant difference at the 1% level.

Table 7: Maximum Likelihood ) by Valuation: Best-fitting ) in the QRE model by
observations grouped by subject valuations 1–5. Each valuation featured a total possible
240 bids. The value ) ≈ 0.040 is the maximum likelihood value when observations taken
from all valuations are pooled. All values were estimated over the boundedly rational
ranges.

classify subjects by type. To create a likelihood function we redefine our

probability vector 8⃗&(.&, 7, !) where k is the level of steps of thinking and 7

is the quantal response parameter. For every lambda, we calculate a best

fitting ! for each subject, then we calculate the log likelihood as before.

D(7) =
/

∑

&=1

min
0

5
∑

(=1

[B&( log [8⃗(.2, 7, !)] ℎ&( +B&( log [8⃗(.1, 7, !)] (1− ℎ&()]

(6)

The value of 7 ≈ 0.060 minimizes equation 6, with most subjects estimated

to have ! > 0, indicating they are doing at least one step of iterative think-

ing. The frequencies of levels of thinking are given in table 8. Appendix table

A.1 provides more detail in this estimation process, including a breakdown

of maximum likelihood estimates by valuation.

The type classifications of the level-! model allow us to return to the

question we investigated in table 6, but in a way that escapes the selection

issues from that table. Since all types are randomly paired with each other,
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level of steps of thinking
in level-k model

number of
subjects

percent of
subjects

0 5 0.208333
1 10 0.416667
2 2 0.083333
3 5 0.208333
4 1 0.041667
5 1 0.041667

Table 8: Subject Distribution by Level-+: Frequency of maximum likelihood level-+
values for all subjects. The maximum likelihood quantal response parameter is ) ≈ 0.06.
Subject observations across all valuations are pooled. All values were estimated over the
boundedly rational ranges. No subject had an estimated level-+ value above 5.

we may observe how outcomes depend on the types of players involved in a

way that does not depend on valuation. We will classify high types as those

that do two or more steps of thinking, and low types as those that do zero or

one steps. Table 9 provides a breakdown of efficient and envy-free outcomes

event
frequency
(percent)

efficient
allocations
within
event

(percent)

envy-free
allocations
within
event

(percent)

2 high level types
79

(0.132)
65

(0.823)
44

(0.557)
1 high level type,
1 low level type

292
(0.487

205
(0.702)

133
(0.455)

2 low level types
229

(0.382)
167

(0.729)
106

(0.463)

Totals
600 437

(0.728)
283

(0.472)

Table 9: Outcomes by Subject Sophistication: Efficient and envy-free allocations
separated by type-interaction. Subjects with best fitting level-+ values 2 or higher are
classified as high types; the others are classified with low types.

by the interaction of types. Two high types are more likely to produce

efficient and envy-free allocations than two low types. But it appears that

one low type and one high type do worse than any other pairing in both

categories. The results are only suggestive, we may only say that 2 high-
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level types have significantly more efficient and envy-free outcomes at the

0.10 level. Similar to table 6, the best types still fail to achieve efficient

outcomes roughly 20 percent of the time, suggesting this may be an upper

bound on efficiency caused by coordination failure.
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Figure 6: Estimated Level-+ with Quantal Response Model vs. empirical

frequencies: valuations !01(#) = !02(#) = 160 with support [0, 60] and ) = 0.172.
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6 Discussion

In this section we introduce a family of mechanisms that generalize our

first-price-auction-type mechanism. Then we analyze the possibility of se-

lecting, out of this family, the mechanism that maximizes the probability of

obtaining a envy-free allocation in a QRE for the mechanism.

6.1 "-auction

Let E ∈ [0, 1]. The E-auction is the mechanism in which first agents report

bids (possibly negative) for object %. Then an agent with the highest bid

receives object % and pays the E convex combination between the maximum

and the minimum bid, i.e., Emax{21, 22} + (1 − E)min{21, 22}. The other

player receives object $ and the transfer of money from the agent who

receives object %. In case of a tie, an agent with highest true valuation of

object % receives object % and pays her bid.

Pure strategy Nash equilibria and pure strategy Nash equilibrium out-

comes coincide for all E-auctions. Recall that we assume without loss of

generality that +01(%) ≤ +02(%). A profile (21, 22) is a Nash equilibrium of

the E-auction if and only if 21 = 22 and the common bid is in the interval

[

+01(%)− 100

2
,
+02(%)− 100

2

]

.

The family of E-auctions generalizes our first-price-auction-type mechanism

(E = 1). Additionally, this family contains the second-price-auction-type

mechanism (E = 0) and the average-price-auction-type mechanism (E = 1
2 ).

6.2 Maximizing no-envy

We have documented that in an experimental setting, 1-auction (i.e., first-

price) outcomes deviate from the Nash equilibrium prediction. Moreover,

these deviations are explained to some extent by players unsophisticated

bidding. We now perform a simulation exercise in which we assume that

agents exhibit the same sort of unsophisticated bidding in E-auctions, and

highlight some open questions and avenues for future research. For simplic-

ity in the presentation, we concentrate in our QRE explanation of agents’

behavior.
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Figure 7: Probability of obtaining an efficient and envy-free allocation in a

QRE of the !-auction: valuations !01(#) = !02(#) = 160 with support [0, 60] and
) = 0.039, 0.172.

Figure 7 shows the probability with which efficient and envy-free allocations

are realized in a QRE equilibrium for each E-auction with E ∈ [0, 1] when

+01(%) = +02(%) = 160, 7 = 0.039, and 7 = 0.172 (these values correspond to

valuation 4 in the experiment). Since each allocation for these valuations is

efficient, there is no trade off between no-envy and efficiency. Generically,

the probability that an envy-free allocation is realized in a QRE equilibrium

in the E-auction is greater when 7 = 0.172 than when 7 = 0.039. This is

expected since as 7 converges to infinity, QRE equilibria converge to Nash

equilibria.15 A more surprising finding is that for a fixed sophistication index

7, the probability to attain an envy-free allocation significatively varies with

E. For 7 = 0.172, the difference between the optimal envy-free E-auction and

the 0-auction (second-price) is close to 5 percent. More striking differences

hold among E-auctions when valuations are +01(%) = 40 and +02(%) = 80 and

7 = 0.039, for example. Figure 8 shows the performance, both in terms of

efficiency and no-envy in this case. The 0-auction (second-price) achieves

higher efficiency than each other E-auction. However, this gain in efficiency

is at most 0.0025. By contrast, the optimal envy-free auction achieves no-

envy with 0.10 more probability than the 0-auction.

15Technically, the limit of QRE equilibria in our model are mixed-strategy Nash equi-
libria; for valuation !01(#) = !02(#) = 160, it is easy to prove that all these equilibria are
envy-free; it is an open question to characterize mixed-strategy equilibria for arbitrary
valuations in our model.
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Figure 8: QRE first-price-auction-type mechanism: valuations !01(#) = 40 and
!02(#) = 80 with support [−60, 0] and ) = 0.039.

The simulation exercises in Figures and 7 and 8 illuminate us about the

effect of players unsophisticated bidding in the possibility to achieve envy-

free allocations. Even though all E-auctions are Nash equilibrium outcome

equivalent, in experimental settings our results suggest some auctions may

perform better than the others. It is an open question to better calibrate

agents’ behavior in E-auctions for E ∕= 1. A relevant issue here is that in

our simulation we assumed the support of each QRE to be uniform across

auctions. A more refined theory can be constructed if one better calibrates

the relation of these supports and E (numerical calculations indicate that

the probability with which envy-free allocations are achieves in the QRE of

an E-auction depend on the choice of strategies support).

7 Conclusions

This paper characterizes the equilibria of an envy-free, first-price, auction

mechanism and compares its outcomes experimentally to those achieved

through ultimatum bargaining. Both mechanisms achieve relatively equal

numbers of efficient outcomes—ultimatum bargaining is slightly higher—

but the auction mechanism achieves significantly more envy-free allocations

and higher earnings for subjects. Nonetheless, these envy-free outcomes are

achieved less than half the time. Dividing outcomes by bid type and subject

sophistication, our results suggest that with sophisticated bidding subjects

may achieve efficient outcomes 80 percent and envy-free outcomes 55–75
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percent. Coordination failure likely causes the remaining discrepancy.

Since subject bids are not fully sophisticated, our results are dependent

on the first-price auction mechanism. Our estimates suggest that a first-price

auction mechanism is not ideal in this setting—an average of the two bids

could achieve a higher proportion of envy-free outcomes. Future research

will need to confirm this prediction.
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val.
(l.v., h.v.)

best-fit. 7
(st.err.)

log
l-hood

prop.
level 0
(st.err.)

prop.
level 1
(st.err.)

prop.
level 2
(st.err.)

prop.
level 3
(st.err.)

prop.
level 4
(st.err.)

prop.
level 5
or above
(st.err.)

val. 1 0.083*** -733.631 0.542*** 0.208*** 0.083* 0.125*** 0.042** 0.000
(40, 80) (0.007) (0.059) (0.032) (0.043) (0.042) (0.019) (0.000)
val. 2 0.188*** -650.579 0.167*** 0.417*** 0.083*** 0.000 0.000 0.333***

(120, 160) (0.005) (0.009) (0.042) (0.013) (0.011) (0.004) (0.037)
val. 3 0.108*** -959.436 0.667*** 0.250*** 0.000 0.042*** 0.000 0.042

(40, 120) (0.010) (0.073) (0.051) (0.063) (0.007) (0.019) (0.025)
val. 4 1.791*** -757.297 0.333*** 0.125*** 0.000 0.000 0.000 0.542***

(160, 160) (0.053) (0.008) (0.010) (0.013) (0.011) (0.016) (0.031)
val. 5 0.072*** -993.97 0.333*** 0.083*** 0.000 0.542*** 0.042*** 0.000
(0, 40) (0.007) (0.039) (0.008) (0.021) (0.039) (0.004) (0.021)

aggregate 0.060*** -4338.88 0.208** 0.417*** 0.083 0.208*** 0.042 0.042***
estimation (0.006) (0.079) (0.043) (0.074) (0.038) (0.025) (0.002)

∗ Significant at the 10% level
∗∗ Significant at the 5% level
∗∗∗ Significant at the 1% level

Table A.1: Level-k with quantal response maximum likelihood estimates for ) with level-+ selected for each subject.

All estimates are taken from the range of boundedly rational bids.
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